Instrucciones de uso

AltoStar®
Parvovirus B19 PCR Kit 1.5

09/2020 ES
AltoStar®

Parvovirus B19 PCR Kit 1.5

Para utilizar con

CFX96™ Deep Well Dx System (Bio-Rad)
Contenido

1. Acerca de estas instrucciones de uso.. 8
2. Uso indicado... 9
3. Contenido del kit.. 9
4. Almacenamiento y manipulación ... 10
 4.1 Almacenamiento... 10
 4.2 Manipulación .. 11
 4.2.1 Master A y Master B .. 12
 4.2.2 QS y NTC ... 12
5. Información general... 13
6. Descripción del producto ... 13
 6.1 Master A y Master B ... 14
 6.2 Estándares de cuantificación (QS) ... 14
 6.3 Control sin plantillas (NTC) ... 15
 6.4 AltoStar® Workflow (flujo de trabajo) ... 15
7. Muestras .. 16
 7.1 Tipos de muestras .. 16
 7.2 Recogida y manipulación de muestras ... 16
 7.3 Volumen de muestras .. 17
 7.4 Tubos de muestras .. 17
 7.5 Códigos de barras de la muestra .. 17
8. Material y dispositivos necesarios pero no proporcionados 18
9. Advertencias, precauciones y limitaciones .. 20
10. Procedimiento ... 22
 10.1 Descripción general del AltoStar® Workflow (flujo de trabajo) 22
10.2 Inicio del AltoStar® AM16 ... 27
10.3 Realización del mantenimiento .. 28
10.4 Programación de una AltoStar® Run (serie) ... 30
10.4.1 Programación manual .. 31
10.4.2 Importación desde LIMS .. 38
10.5 Creación de una AltoStar® Run (serie) .. 39
10.6 Inicio de una serie de purificación .. 41
10.6.1 Preparación de las muestras ... 42
10.6.1.1 Plasma .. 42
10.6.2 Preparación de reactivos para una serie de purificación 43
10.6.3 Carga del instrumento para una serie de purificación 44
10.7 Durante la serie de purificación ... 55
10.8 Fin de la serie de purificación ... 58
10.9 Resultados de serie de purificación ... 61
10.10 Estabilidad del eluido .. 63
10.10.1 Almacenamiento .. 63
10.10.2 Sellado de la Eluate Plate (placa de eluidos) 63
10.10.3 Eliminación del sellado de la Eluate Plate (placa de eluidos) 65
10.11 Inicio de una serie de configuración de PCR 66
10.12 Preparación de reactivos para una serie de configuración de PCR 68
10.12.1 Carga del AltoStar® AM16 para una serie de configuración de PCR 69
10.13 Durante la serie de configuración de PCR ... 77
10.14 Fin de la serie de configuración de PCR ... 78
10.15 Resultados de serie de configuración de PCR 80
10.16 Sellado de la PCR Plate (placa PCR) .. 82
10.17 Estabilidad de la mezcla de PCR .. 83
10.18 Inicio de una serie PCR .. 84
10.19 Durante la serie PCR .. 87
10.20 Asignación de ensayos a grupos de pocillos .. 88
10.21 Análisis de datos PCR...92
10.21.1 Corrección de la línea de base..94
10.21.2 Exclusión de señales de PCR irregulares.................................96
10.21.3 Ajuste de umbrales..100
10.21.4 Exclusión de pocillos que contengan datos no válidos103
10.21.4.1 Validez de una serie PCR de diagnóstico (cualitativa)...........107
10.21.4.2 Validez de una serie PCR de diagnóstico (cuantitativa).........107
10.21.4.3 Validez de los resultados para una muestra.......................109
10.21.5 Exportación de resultados de PCR para la interpretación de resultados automatizada ...109
10.21.6 Exportación de resultados de PCR para la interpretación de resultados manual ...111
10.21.6.1 Interpretación manual de los resultados113

11. Eliminación ..116

12. Evaluación de rendimiento ..117
12.1 Plasma..117
12.1.1 Sensibilidad analítica...117
12.1.2 Especificidad analítica...118
12.1.2.1 Muestras negativas ...119
12.1.2.2 Sustancias interferentes..119
12.1.2.3 Reactividad cruzada...119
12.1.3 Rango lineal..120
12.1.4 Precisión..121
12.1.5 Índice de fallo total..122
12.1.6 Arrastre...123
12.1.7 Evaluación del diagnóstico..123

13. Control de calidad ...126

14. Asistencia técnica ...126
1. Acerca de estas instrucciones de uso

Estas instrucciones de uso guían al usuario en la utilización del kit AltoStar® Parvovirus B19 PCR Kit 1.5 en el AltoStar® Automation System AM16 (sistema de automatización) (Hamilton; en lo sucesivo, se abreviará como AltoStar® AM16) con el AltoStar® Connect software (versión 1.6.16 o superior, Hamilton) para la configuración de PCR automatizada en el CFX96™ Deep Well Dx System* (Bio-Rad, en lo sucesivo, se abreviará como CFX96™ DW Dx) con el CFX Manager™ Dx software (versión, 3.1, Bio-Rad) para PCR en tiempo real. Los pasos de operación principales del «AltoStar® Workflow» (flujo de trabajo) [para ver detalles, consulte el capítulo 6.4 AltoStar® Workflow (flujo de trabajo)] se describen con claridad pero sin garantía de integridad.

Para obtener información más detallada sobre estos productos, consulte los manuales o las instrucciones de uso respectivos:

- Manual IVD del operador del AltoStar® AM16 (Hamilton)
- Manual IVD del operador del AltoStar® Connect Software (Hamilton)
- Instrucciones de uso del kit AltoStar® Purification Kit 1.5
- Instrucciones de uso del AltoStar® Internal Control 1.5
- Manual de funcionamiento sistemas CFX96™ Dx y CFX96™ Deep Well Dx (Bio-Rad)

En este manual, los términos PRECAUCIÓN y NOTA tienen los significados siguientes:

PRECAUCIÓN

Destaca instrucciones o procedimientos operativos que, si no se siguen correctamente, pueden provocar lesiones personales o afectar al rendimiento del producto. Póngase en contacto con el soporte técnico de altona Diagnostics si necesita ayuda.

NOTA

Se ofrece al usuario información que es útil pero no esencial para la tarea en cuestión.

Lea las instrucciones de uso detenidamente antes de utilizar el producto.

* «CFX96™ Deep Well Dx System» es el nuevo nombre de marca para la versión IVD del CFX96™ Deep Well Real-Time PCR Detection System (sistema de detección) (Bio-Rad).
2. Uso indicado

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 es un test diagnóstico \textit{in vitro} basado en tecnología PCR en tiempo real para la detección y cuantificación de ADN específico del parvovirus B19 en plasma humano.

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 está configurado para su uso con el CFX96™ Deep Well Dx System (Bio-Rad) en combinación con el AltoStar® Automation System AM16 (sistema de automatización), el kit AltoStar® Purification Kit 1.5 y el AltoStar® Internal Control 1.5 (control interno). Los resultados generados con el kit AltoStar® Parvovirus B19 PCR Kit 1.5 deben interpretarse junto con otros hallazgos clínicos y de laboratorio.

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 se ha diseñado para que lo utilicen usuarios profesionales formados en técnicas biológicas moleculares.

3. Contenido del kit

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 contiene los siguientes componentes:

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Color de la tapa & Componente del kit AltoStar® Parvovirus B19 1.5 & Número de tubos & Volumen nominal [µl/tubo] \\
\hline
Azul & Master A & 8 & 60 \\
Violeta & Master B & 8 & 180 \\
Rojo & QS1* & 2 & 250 \\
Rojo & QS2* & 2 & 250 \\
Rojo & QS3* & 2 & 250 \\
Rojo & QS4* & 2 & 250 \\
Blanco & NTC** & 2 & 250 \\
\hline
\end{tabular}
\caption{Componentes del kit}
\end{table}

* Quantification Standard (estándar de cuantificación)

** No Template Control (control sin plantillas)
El kit AltoStar® Parvovirus B19 PCR Kit 1.5 contiene reactivos suficientes para realizar 96 reacciones en un número máximo de 8 series.

El producto se envía en hielo seco. Al recibir la entrega y antes de usarla por primera vez, compruebe lo siguiente en el producto y sus componentes:

- Integridad
- Si está completo en cuanto a número, tipo y relleno
- Marcado correcto
- Fecha de caducidad
- Estado congelado
- Claridad y ausencia de partículas

Si uno o más componentes no están congelados en el momento de la recepción, o si se han puesto en peligro tubos durante el envío, póngase en contacto con el soporte técnico de altona Diagnostics para obtener ayuda (consulte el capítulo 14 Asistencia técnica).

4. Almacenamiento y manipulación

Todos los reactivos incluidos en el kit AltoStar® Parvovirus B19 PCR Kit 1.5 son soluciones listas para usar.

4.1 Almacenamiento

Todos los componentes del kit AltoStar® Parvovirus B19 PCR Kit 1.5 deben almacenarse entre -25 °C y -15 °C tras su llegada.
Las condiciones de almacenamiento incorrectas pueden perjudicar el rendimiento del producto.

No utilice componentes de productos después de la fecha de caducidad impresa en la etiqueta del componente.

4.2 Manipulación

No exceda la secuencia de congelación y descongelación ni las duraciones de manipulación especificadas en estas instrucciones de uso.

La manipulación incorrecta de los componentes del producto y las muestras puede provocar contaminación y dar lugar a unos resultados de examen IVD incorrectos.

- No intercambie viales ni tapones de botellas, ya que puede producirse contaminación cruzada.

- Para minimizar el riesgo de contaminación cruzada, almacene el material positivo y/o potencialmente positivo separado de los componentes del kit.

- Utilice áreas de trabajo separadas para la preparación de las muestras, la configuración de reacción y las actividades de amplificación/detección.

- Lleve siempre guantes desechables.

- No abra las placas PCR después de la amplificación, para evitar la contaminación con amplicones.
4.2.1 Master A y Master B

Tras la descongelación, el Master A y Master B permanecerán estables durante 5 horas a una temperatura de hasta +30 °C.

4.2.2 QS y NTC

1. Tras la descongelación, QS y NTC permanecerán estables 5 horas a una temperatura de hasta +30 °C.

2. Deseche las tapas de los tubos de QS y NTC en cada uso y utilice nuevas tapas para evitar la contaminación de los reactivos.

3. Tras el uso, cierre los tubos de QS y NTC con tapas nuevas y congélelos inmediatamente.

4. No supere la siguiente secuencia de descongelación-congelación para cada tubo de QS y NTC: Descongelación 1 → Congelación 1 → Descongelación 2 → Congelación 2 → Descongelación 3 → Congelación 3 → Descongelación 4
5. Información general

El parvovirus humano B19 (parvovirus B19), también denominado eritrovirus B19, fue el primer virus humano conocido de la familia Parvoviridae y del género Erythroparvovirus. Se trata de un virus icosaédrico no encapsulado que contiene un genoma de ADN monocatenario lineal.

El parvovirus B19 causa un sarpullido infantil denominado quinta enfermedad o eritema infeccioso que suele conocerse como el síndrome de la mejilla abofeteada. El parvovirus B19 es una de las causas principales de crisis aplásicas en pacientes con anemia hemolítica. Pueden observarse diversas complicaciones fetales, especialmente tras infecciones maternas durante el segundo y tercer trimestre de gestación.

Se han identificado tres genotipos diferentes (genotipo I-III) del parvovirus humano B19, con una variación de hasta el 15 % en la identidad de nucleótidos. Basándose en el análisis secuencial y las propiedades biológicas, el Comité Internacional de Taxonomía de Virus ha clasificado los representantes de los tres genotipos como especies de parvovirus humano B19. En Europa, los requisitos regulatorios especifican que los depósitos de plasma utilizados en la producción de inmunoglobulina anti D y el plasma tratado para la inactivación del virus deben someterse a pruebas para detectar los niveles de ADN del parvovirus B19. Esos depósitos de plasma no deben superar el umbral de concentración de 10 UI/μl para el ADN del parvovirus B19, conforme a lo definido por el estándar internacional de la OMS.

6. Descripción del producto

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 es un test diagnóstico in vitro para la detección y cuantificación de ADN específico de parvovirus B19 en plasma humano dentro del AltoStar® Workflow (flujo de trabajo) [para obtener más detalles, consulte el capítulo 6.4 AltoStar® Workflow (flujo de trabajo)]. Se basa en la tecnología de PCR en tiempo real, que utiliza la reacción en cadena de la polimerasa (PCR) para la amplificación de secuencias objetivo específicas de parvovirus B19 y sondas específicas objetivo marcadas con fluorescencia para la detección del ADN amplificado.
Además del sistema de detección y amplificación específicas de ADN de parvovirus B19, el ensayo incluye oligonucleótidos para la amplificación y la detección del IC [AltoStar® Internal Control 1.5 (control interno)]. El IC se añade automáticamente al principio del procedimiento de purificación del ácido nucleico en el AltoStar® AM16. Para obtener más detalles, consulte las instrucciones de uso del AltoStar® Internal Control 1.5 (control interno).

Las sondas específicas para el ADN de parvovirus B19 se marcan con el fluoróforo FAM™. La sonda específica para el IC está marcada con un fluoróforo detectable en el canal VIC™.

Utilizar sondas vinculadas a colorantes distinguibles permite la detección paralela de ADN específico de parvovirus B19 y el Internal Control (control interno) de los canales detectores correspondientes del CFX96™ DW Dx.

6.1 Master A y Master B
Master A y Master B contienen todos los componentes (solución amortiguadora de PCR, polimerasa de ADN, sal de magnesio, cebadores y sondas) para permitir la amplificación con mediación de PCR y la detección objetivo de ADN específico de parvovirus B19 y de IC [AltoStar® Internal Control 1.5 (control interno)] en una configuración de reacción.

6.2 Estándares de cuantificación (QS)
Los estándares de cuantificación (QS) contienen concentraciones estandarizadas de ADN específico de parvovirus B19 (consulte la Tabla 2). Se han calibrado con el 3er estándar internacional de la OMS para parvovirus B19 para técnicas de amplificación de ácido nucleico (código NIBSC: 12/208). Los estándares de cuantificación se utilizan para verificar la funcionalidad del sistema de detección y amplificación específicas de ADN de parvovirus B19, así como para generar una curva estándar, lo que permite la cuantificación de ADN específico de parvovirus B19 en una muestra.
Tabla 2: Estándares de cuantificación (QS)

<table>
<thead>
<tr>
<th>Estándar de cuantificación (QS)</th>
<th>Concentración [UI/µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS1</td>
<td>1,00E+04</td>
</tr>
<tr>
<td>QS2</td>
<td>1,00E+03</td>
</tr>
<tr>
<td>QS3</td>
<td>1,00E+02</td>
</tr>
<tr>
<td>QS4</td>
<td>1,00E+01</td>
</tr>
</tbody>
</table>

6.3 Control sin plantillas (NTC)

El control sin plantillas (NTC) no contiene ADN específico de parvovirus B19 pero sí contiene la plantilla de Internal Control (control interno). El NTC se utiliza como control negativo para el PCR en tiempo real específico de ADN de parvovirus B19 e indica la posible contaminación de Master A y Master B.

6.4 AltoStar® Workflow (flujo de trabajo)

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 se ha diseñado para su uso dentro del AltoStar® Workflow (flujo de trabajo). El AltoStar® Workflow (flujo de trabajo) incluye los pasos siguientes:

1. Programar una AltoStar® Run (serie).
2. Purification Run (serie de purificación) en el AltoStar® AM16 utilizando el kit AltoStar® Purification Kit 1.5 y el AltoStar® Internal Control 1.5 (control interno).
3. Serie de configuración de PCR en el AltoStar® AM16 usando el kit AltoStar® Parvovirus B19 PCR Kit 1.5.
4. Serie PCR en tiempo real en un CFX96™ DW Dx.

Todo los tipos de muestras y volúmenes de muestras especificados para su uso con el kit AltoStar® Purification Kit 1.5 pueden procesarse simultáneamente en el AltoStar® AM16. Cada muestra puede analizarse con tantos ensayos en paralelo como permita el eluido disponible.
7. Muestras

7.1 Tipos de muestras

Los siguientes tipos de muestras están validados para su uso con el kit AltoStar® Parvovirus B19 PCR Kit 1.5:

• Plasma humano con EDTA
• Plasma citratado humano

PRECAUCIÓN

¡No utilice otros tipos de muestras! El uso de otros tipos de muestras puede perjudicar el rendimiento del producto.

7.2 Recogida y manipulación de muestras

La sangre debe recogerse mediante sistemas de recogida de sangre estándar y disponibles comercialmente (p. ej., de Sarstedt, Becton Dickinson, Greiner o equivalente). El contenido de los tubos deberá mezclarse justo después de la recogida de las muestras. Las muestras de sangre deberán transportarse refrigeradas (2 °C a 8 °C). El transporte deberá realizarse de acuerdo con la legislación local o nacional relativa al transporte de material biológico.

Para la generación de plasma con EDTA, es necesario centrifugar la sangre entera en un plazo de 24 horas a partir de la recogida y de acuerdo con las instrucciones proporcionadas por el fabricante del sistema de recogida. El plasma con EDTA debe almacenarse entre 2 °C y 8 °C durante no más de 14 días (Abdul-Ali et al. 2011).
PRECAUCIÓN

Trate siempre las muestras como si fueran infecciosas y (bio)peligrosas conforme a los procedimientos seguros de laboratorio. Si se derrama material de las muestras, utilice rápidamente un desinfectante adecuado. Manipule los materiales contaminados como si fueran biopeligrosos.

NOTA

El almacenamiento en congelación no pone en peligro el rendimiento del kit. Cuando trabaje con muestras congeladas, asegúrese de que se hayan descongelado y mezclado correctamente antes de su uso.

7.3 Volumen de muestras

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 está validado para purificaciones de ácido nucleico de un volumen de muestras de 500 μl. Debe proporcionarse un volumen de muestras adicional para compensar el volumen muerto del tubo de muestras utilizado (consulte el capítulo 7.4 Tubos de muestras).

7.4 Tubos de muestras

Pueden comprarse tubos de muestras adecuados para su uso en el AltoStar® AM16 a altona Diagnostics (tubo de 7 ml con tapón, 82 x 13 mm, VK000010). El usuario puede probar la aplicabilidad de otros tubos de muestras. Para ver detalles, consulte las instrucciones de uso del kit AltoStar® Purification Kit 1.5.

7.5 Códigos de barras de la muestra

Para la identificación automatizada de muestras con el AltoStar® AM16, deben etiquetarse todos los tubos de muestras con un código de barras adecuado. Para ver detalles, consulte las instrucciones de uso del kit AltoStar® Purification Kit 1.5.
8. Material y dispositivos necesarios pero no proporcionados

El material y los dispositivos que se muestran en la Tabla 3 deben solicitarse a altona Diagnostics GmbH.

Tabla 3: Material y dispositivos necesarios

<table>
<thead>
<tr>
<th>Nombre del material</th>
<th>Descripción</th>
<th>N.º de pedido</th>
<th>Unidad de envío</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltoStar® AM16</td>
<td>AltoStar® Automation System AM16 (sistema de automatización)</td>
<td>806160</td>
<td>1</td>
</tr>
<tr>
<td>AltoStar® Connect software</td>
<td>AltoStar® Connect software (versión 1.6.16 o superior)</td>
<td>911275</td>
<td>1</td>
</tr>
<tr>
<td>CFX96™ DW Dx</td>
<td>CFX96™ Deep Well Dx System* (Bio-Rad) con CFX Manager™ Dx software (versión 3.1)</td>
<td>DT16</td>
<td>1</td>
</tr>
<tr>
<td>AltoStar® Purification Kit 1.5</td>
<td>Kit AltoStar® Purification Kit 1.5</td>
<td>PK15-16</td>
<td>1</td>
</tr>
<tr>
<td>AltoStar® Internal Control 1.5</td>
<td>AltoStar® Internal Control 1.5 (control interno)</td>
<td>IC15-16</td>
<td>1</td>
</tr>
<tr>
<td>PCR Plate</td>
<td>Hard-Shell® PCR Plate (placa PCR) de 96 pocillos, perfil bajo, con semifaldón, shell transparente, código de barras blanco en pocillo</td>
<td>VK000005</td>
<td>25</td>
</tr>
<tr>
<td>AltoStar® PCR Plate Sealing Foil</td>
<td>AltoStar® PCR Plate Sealing Foil (lámina sellante para placa PCR) con esquina cortada A1 y lados de 10 mm (SP-0235)</td>
<td>VK000006</td>
<td>100</td>
</tr>
<tr>
<td>1000 µl CO-RE Tips</td>
<td>CO-RE Tips (puntas de CO-RE), puntas de alto volumen de 8 x 480 (1000 µl) con filtros</td>
<td>VK000007</td>
<td>3840</td>
</tr>
<tr>
<td>300 µl CO-RE Tips</td>
<td>CO-RE Tips (puntas de CO-RE), puntas de volumen estándar de 12 x 480 (300 µl) con filtros</td>
<td>VK000008</td>
<td>5760</td>
</tr>
<tr>
<td>Pooling Tube</td>
<td>Tubo de 5 ml, 92 x 15,3 mm (redondo), PP, con código de barras</td>
<td>VK000002</td>
<td>1000</td>
</tr>
</tbody>
</table>
Tabla 4: Material y dispositivos adicionales de laboratorio

<table>
<thead>
<tr>
<th>Material</th>
<th>Descripción</th>
<th>N.º de pedido</th>
<th>Unidad de envío</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Sealer</td>
<td>p. ej., AltoStar® Plate Sealer (sellador de placas)</td>
<td>VK000023</td>
<td>1</td>
</tr>
</tbody>
</table>

Material y dispositivos generales:

- Agitador vortex
- Guantes sin polvo (desechables)
- Centrífuga para centrífugado de los reactivos del kit PCR
- Centrífuga para centrífugado de placas PCR
9. Advertencias, precauciones y limitaciones

- Antes del primer uso, compruebe el producto y sus componentes para ver si están completos en cuanto a número, tipo y relleno. No utilice un producto incompleto o defectuoso, podría perjudicar el rendimiento.

- ¡No utilice otros tipos de muestras! El uso de otros tipos de muestras puede perjudicar el rendimiento del producto.

- La presencia de inhibidores de PCR (como p. ej., heparina) puede provocar falsos negativos o resultados no válidos.

- Si la muestra contiene otros patógenos distintos de parvovirus B19, puede darse competencia con la amplificación objetivo o reactividades cruzadas.

- Las condiciones de almacenamiento incorrectas pueden perjudicar el rendimiento del producto.

- La ausencia de centrifugación de los componentes del producto tras la descongelación podría provocar la contaminación de los componentes con restos de reactivos en las tapas y, como consecuencia, podría perjudicar el rendimiento del producto.

- No exceda la secuencia de congelación y descongelación ni las duraciones de manipulación especificadas en estas instrucciones de uso.

- No reutilice los tapones de tubos para evitar la contaminación de los reactivos.

- No utilice componentes de productos después de la fecha de caducidad impresa en la etiqueta del componente.

- La manipulación incorrecta de los componentes del producto y las muestras puede provocar contaminación y dar lugar a unos resultados de examen IVD incorrectos.
 - No intercambie viales ni tapones de botellas, ya que puede producirse contaminación cruzada.
 - Para minimizar el riesgo de contaminación cruzada, almacene el material positivo y/o potencialmente positivo separado de los componentes del kit.
 - Utilice áreas de trabajo separadas para la preparación de las muestras, la configuración de reacción y las actividades de amplificación/detección.
 - Lleve siempre guantes desechables.
 - No abra las placas PCR después de la amplificación, para evitar la contaminación con amplicones.
• El almacenamiento de eluidos en condiciones incorrectas puede provocar la degradación de la secuencia objetivo de parvovirus B19.

• No supere el tiempo de almacenamiento de la mezcla de PCR. Esto podría perjudicar el rendimiento del producto.

• Trate siempre las muestras como si fueran infecciosas y (bio)peligrosas conforme a los procedimientos seguros de laboratorio. Si se derrama material de las muestras, utilice rápidamente un desinfectante adecuado. Manipule los materiales contaminados como si fueran biopeligrosos.

• Elimine los desechos peligrosos y biológicos solo conforme a las regulaciones locales y nacionales para evitar la contaminación ambiental.

• Como con cualquier test diagnóstico, los resultados deben interpretarse teniendo en cuenta todos los hallazgos clínicos y de laboratorio.

• Las posibles mutaciones dentro de las regiones objetivo del genoma de Parvovirus B19 cubiertas por los cebadores o las sondas utilizados en el kit pueden provocar fallos al detectar la presencia del patógeno.
10. Procedimiento

10.1 Descripción general del AltoStar® Workflow (flujo de trabajo)

Los pasos del AltoStar® Workflow (flujo de trabajo) se resumen en la Tabla 5.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Iniciar el AltoStar® AM16</td>
<td>• Encienda el AltoStar® AM16.</td>
</tr>
<tr>
<td></td>
<td>• Encienda el ordenador y el monitor.</td>
</tr>
<tr>
<td></td>
<td>• Inicie el AltoStar® Connect software.</td>
</tr>
<tr>
<td>2. Realizar el mantenimiento</td>
<td>En la barra de menú, haga clic en Application → Instrument Maintenance (aplicación → mantenimiento del instrumento).</td>
</tr>
<tr>
<td></td>
<td>• Si está pendiente el mantenimiento semanal, haga clic en Start Weekly Maintenance (iniciar mantenimiento semanal).</td>
</tr>
<tr>
<td></td>
<td>• Si está pendiente el mantenimiento diario, haga clic en Start Daily Maintenance (iniciar mantenimiento diario).</td>
</tr>
<tr>
<td></td>
<td>Siga las instrucciones en pantalla para completar el proceso de mantenimiento.</td>
</tr>
<tr>
<td>3. Programar una AltoStar® Run (serie)</td>
<td>En la barra de menú, haga clic en Program Run → Program Run (AltoStar® Purification) [programar serie → programar serie (AltoStar® Purificación)]. De forma alternativa, vuelva a la pantalla de inicio y haga clic en el botón Program Run (programar serie).</td>
</tr>
<tr>
<td></td>
<td>• Introduzca muestras o impórtelas del LIMS (por sus siglas en inglés).</td>
</tr>
<tr>
<td></td>
<td>• Seleccione ensayos para las muestras a menos que ya las haya importado del LIMS.</td>
</tr>
<tr>
<td></td>
<td>• Haga clic en el botón Create Run (crear serie) en la barra de herramientas para crear la AltoStar® Run (serie).</td>
</tr>
<tr>
<td>Paso</td>
<td>Acción</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 4. Iniciar una serie de purificación | En la barra de menú, haga clic en **Purification → Start Purification** (purificación → iniciar purificación). De forma alternativa, vuelva a la pantalla de inicio y haga clic en el botón **Start Purification** (iniciar purificación).
• Seleccione la serie de purificación que desea iniciar para mostrar las muestras incluidas en la serie de purificación seleccionada.
• Prepare los reactivos de purificación:
 ◦ Asegúrese de que los reactivos de purificación que desea utilizar tengan el mismo número de carga [excepto el AltoStar® Internal Control 1.5 (control interno)] y no hayan caducado.
 ◦ Si hay precipitados visibles en el Lysis Buffer (tampón de lisis), caliéntelo (≤ 50 °C) hasta que se disuelvan por completo.
 ◦ Descongele el IC [AltoStar® Internal Control 1.5 (control interno)] y aplique un vortex durante 5 segundos.
 ◦ Aplique un vortex a las Magnetic Beads (esferas magnéticas) durante 5 segundos sin mojar la tapa.
• Prepare las muestras para la serie de purificación que va a iniciarse como se describe en el capítulo 10.6.1 Preparación de las muestras.
• Haga clic en el botón **Start Run** (iniciar serie) en la barra de herramientas.
• Siga los cuadros de diálogo de carga y cargue el instrumento en consonancia.
• Confirme el mensaje **Loading complete** (carga completa) con **OK** (aceptar) o espere 10 segundos.
<p>| | El sistema realizará a continuación la serie de purificación automáticamente. |</p>
<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Finalizar la serie de purificación</td>
<td>• Asegúrese de que la bandeja de carga está vacía y confirme el cuadro de diálogo Run finished (serie finalizada) haciendo clic en OK (aceptar).</td>
</tr>
<tr>
<td></td>
<td>• Siga las instrucciones del cuadro de diálogo Maintenance (mantenimiento) y confirme con OK (aceptar).</td>
</tr>
<tr>
<td></td>
<td>• Selle y almacene los componentes del kit AltoStar® Purification Kit 1.5 que puedan reutilizarse.</td>
</tr>
<tr>
<td></td>
<td>• Si la serie de configuración de PCR asociada no se inicia inmediatamente, selle la Eluate Plate (placa de eluidos) con AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos) y almacénela a una temperatura de entre 2 °C y 8 °C durante 24 horas.</td>
</tr>
<tr>
<td></td>
<td>• Vea los resultados de la serie de purificación para confirmar el procesamiento correcto de cada muestra.</td>
</tr>
<tr>
<td>Paso</td>
<td>Acción</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| **6. Iniciar una serie de configuración de PCR** | En la barra de menú, haga clic en **PCR Setup → Start PCR Setup** (configuración de PCR → iniciar configuración de PCR). De forma alternativa, vuelva a la pantalla de inicio y haga clic en el botón **Start PCR Setup** (iniciar configuración de PCR).
 • Seleccione la serie de configuración de PCR que desea iniciar para mostrar la Eluate Plate (placa de eluidos) y los reactivos en la serie de configuración de PCR seleccionada.
 • Prepare los reactivos de PCR:
 ◦ Asegúrese de que los Masters y los controles que se van a utilizar son del mismo lote de kits y no están caducados.
 ◦ Descongele la cantidad necesaria de tubos de Master y control, aplique un vortex brevemente y centrifugue.
 • Si la Eluate Plate (placa de eluidos) está sellada, centrifúguela brevemente y quite el sello con cuidado.
 • Haga clic en el botón **Start Run** (iniciar serie) en la barra de herramientas.
 • Siga el cuadro de diálogo **Loading** (carga) y cargue el instrumento en consonancia.
 • Confirme el mensaje **Loading complete** (carga completa) con **OK** (aceptar) o espere 10 segundos.
 • El sistema realizará a continuación la serie de configuración de PCR automáticamente. |
| **7. Finalizar la serie de configuración de PCR** | Asegúrese de que la bandeja de carga está vacía y confirme el cuadro de diálogo **Run finished** (serie finalizada) haciendo clic en **OK** (aceptar).
 • Siga las instrucciones del cuadro de diálogo **Maintenance** (mantenimiento) y confirme con **OK** (aceptar).
 • Selle y almacene los componentes del kit AltoStar® Parvovirus B19 PCR Kit 1.5 que puedan reutilizarse.
 • Vea los resultados de la serie de configuración de PCR para confirmar el procesamiento correcto de cada muestra. |
<table>
<thead>
<tr>
<th>Paso</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Sellar la PCR Plate (placa PCR)</td>
<td>• Selle la PCR Plate (placa PCR) con AltoStar® PCR Plate Sealing Foil (lámina sellante para placa PCR).</td>
</tr>
<tr>
<td>9. Iniciar la serie PCR</td>
<td>• Encienda el CFX96™ DW Dx, el ordenador conectado y el monitor.</td>
</tr>
<tr>
<td></td>
<td>• Inicie el CFX Manager™ Dx software.</td>
</tr>
<tr>
<td></td>
<td>• Abra el CFX96™ DW Dx.</td>
</tr>
<tr>
<td></td>
<td>• Centrifugue la PCR Plate (placa PCR) e insértela en el CFX96™ DW Dx.</td>
</tr>
<tr>
<td></td>
<td>• Seleccione File → Open → LIMS File… (archivo → abrir → archivo de LIMS…) en la barra de menú.</td>
</tr>
<tr>
<td></td>
<td>• Escanee el código de barras de la PCR Plate (placa PCR) con el escáner de código de barras de mano.</td>
</tr>
<tr>
<td></td>
<td>• Cierre el CFX96™ DW Dx.</td>
</tr>
<tr>
<td></td>
<td>• Haga clic en el botón Start Run (iniciar serie) para iniciar la serie PCR. Ponga nombre al archivo de la serie PCR y guárdelo.</td>
</tr>
<tr>
<td></td>
<td>• El CFX96™ DW Dx realizará a continuación la serie PCR automáticamente.</td>
</tr>
<tr>
<td>10. Separar ensayos para el análisis individual</td>
<td>• Separar todos los ensayos en la serie PCR en grupos de pocillos diferentes.</td>
</tr>
<tr>
<td>11. Analizar los datos e interpretar los resultados de la serie PCR</td>
<td>Para cada grupo de pocillos individualmente:</td>
</tr>
<tr>
<td></td>
<td>• Realice la corrección de la línea de base en todos los pocillos para todos los canales de detección utilizados.</td>
</tr>
<tr>
<td></td>
<td>• Excluya los pocillos con señales de PCR irregulares.</td>
</tr>
<tr>
<td></td>
<td>• Establezca los umbrales de todos los canales de detección conforme a los controles.</td>
</tr>
<tr>
<td></td>
<td>• Excluya los pocillos que contengan datos no válidos.</td>
</tr>
<tr>
<td></td>
<td>• Genere el archivo de resultados LIMS para exportar los resultados al LIMS.</td>
</tr>
<tr>
<td></td>
<td>• Genere el informe de resultados para la interpretación manual de los resultados.</td>
</tr>
</tbody>
</table>
10.2 Inicio del AltoStar® AM16

1. Encienda el AltoStar® AM16 con el interruptor verde de la parte frontal izquierda e inicie el ordenador pulsando el botón de encendido.

2. Espere a que se inicie Windows.

3. Inicie el AltoStar® Connect software utilizando el icono a* en el escritorio de Windows, en la barra de tareas de Windows o en el menú de inicio de Windows.

Se abre la pantalla de inicio del AltoStar® Connect software (consulte la Figura 1), que muestra tres botones que representan los pasos del AltoStar® Workflow (flujo de trabajo) que deben realizarse en el AltoStar® AM16:

- **Program Run** (programar serie): se introducen los datos de muestras y se asignan los ensayos a las muestras. Las muestras programadas se asignan entonces a una AltoStar® Run (serie) [consulte el capítulo 10.5 Creación de una AltoStar® Run (serie)], que incluye una serie de purificación y una o más series PCR y de configuración de PCR. Pueden preprogramarse varias AltoStar® Runs (series) con antelación.

- **Start Purification** (iniciar purificación): se selecciona una serie de purificación programada y se inicia como se describe en el capítulo 10.6 Inicio de una serie de purificación.

- **Start PCR Setup** (iniciar configuración PCR): se selecciona una serie de configuración de PCR programada y se inicia como se describe en el capítulo 10.11 Inicio de una serie de configuración de PCR.
10.3 Realización del mantenimiento

1. Acceda a la pantalla de mantenimiento haciendo clic en **Application → Instrument Maintenance** (aplicación → mantenimiento del instrumento) en la barra de menú (consulte la Figura 1).

Se indica el estado válido de Daily Maintenance (mantenimiento diario) y Weekly Maintenance (mantenimiento semanal) con una marca de verificación verde en la columna **Status** (estado) (consulte la Figura 2). Si se muestra un círculo rojo tachado, debe realizarse el procedimiento de mantenimiento respectivo.
Si debe realizarse el mantenimiento diario o semanal:

1. Haga clic en el botón correspondiente en la barra de herramientas.
2. Siga las instrucciones en pantalla para completar el procedimiento de mantenimiento. Consulte el manual IVD del operador del AltoStar® Automation System AM16 (sistema de automatización) y el manual IVD del operador del AltoStar® Connect software para obtener información detallada.

Las rutinas de mantenimiento verifican la funcionalidad correcta del instrumento y solicitarán todas las acciones de usuario necesarias, incluida la limpieza del instrumento.

NOTA

Verificación (verificación) se refiere al procedimiento de mantenimiento semestral que realizan los ingenieros de servicio de campo formados de Hamilton. La fila *Verificación* (verificación) debe mostrar también una marca de verificación verde en la columna *Estado* (estado). De no ser así, el instrumento no procesará ninguna muestra ni ningún reactivo.
Figura 2: Pantalla de mantenimiento con un estado de mantenimiento válido

10.4 Programación de una AltoStar® Run (serie)
La introducción de datos de muestras y asignaciones de ensayos puede realizarse manualmente (consulte el capítulo 10.4.1 Programación manual) o importándolos de un Sistema de gestión de información de laboratorio [LIMS (por sus siglas en inglés)]. Si no se requiere programación manual, prosiga con el capítulo 10.4.2 Importación desde LIMS.
10.4.1 Programación manual

1. Haga clic en Program Run → Program Run (AltoStar® Purification) [programar serie → programar serie (AltoStar® Purificación)] en la barra de menú. De forma alternativa, vuelva a la pantalla de inicio del AltoStar® Connect software y seleccione el botón Program Run (programar serie).

Se abre la pantalla de programación (consulte la Figura 3), que muestra la tabla de muestras en la parte inferior de la pantalla con columnas para:

- Propiedades de las muestras: Sample Name (nombre de la muestra) (opcional), Sample Barcode (código de barras de la muestra), Sample Type (tipo de muestra) y Predilution (predilución)
- Ajustes de las muestras: Process Sample (muestra de proceso), Sample Priority (prioridad de las muestras)
- Información de la muestra: Sample Volume (volumen de muestras) necesario para la serie de purificación (el volumen muerto no se contabiliza), Eluate left (eluido restante, determinado por la asignación de ensayos)
- Asignación de ensayos para las muestras: Programming (programación)

NOTA

Los ajustes de muestras Process Sample (muestra de proceso) y Sample Priority (prioridad de las muestras) se seleccionan manualmente mientras que la información de la muestra Sample Volume (volumen de muestras) y Eluate left (eluido restante) se establecen automáticamente cuando se asignan ensayos PCR a las muestras.
Figura 3: Pantalla de programación

2. Haga clic en el botón Add Samples (añadir muestras) para añadir muestras manualmente a la tabla de muestras. Aparecerá el cuadro de diálogo Add Samples (añadir muestras) (consulte la Figura 4).
3. Seleccione el tipo de muestra plasma en el campo **Sample Type** (tipo de muestra).

NOTA

Si se selecciona el tipo de muestra incorrecto en el campo **Sample Type** (tipo de muestra), no se puede procesar la muestra.

4. **Opcional**: Introduzca un nombre de muestra en el campo **Sample Name** (nombre de muestra).

5. Introduzca un código de barras en el escáner de código de barras de mano del campo **Sample Barcode** (código de barras de la muestra). Se requiere un código de barras único para cada tubo de muestras.

6. Para cada muestra, compruebe si está disponible el volumen de muestras necesario de 500 µl más el volumen muerto del tubo de muestras utilizado.
NOTA

Un volumen de muestras insuficiente (por ejemplo, por falta del volumen muerto necesario del tubo de muestras) provocará la exclusión de la muestra de la serie de purificación.

7. Marque la casilla de comprobación **Predilution** (predilución) si es necesario prediluir la muestra durante el procedimiento de preparación de las muestras (consulte el capítulo 10.6.1 Preparación de las muestras) para proporcionar el volumen de muestras necesario.

- Aparecerán los campos **Sample Volume** (volumen de muestras) y **Added Diluent** (diluyente añadido) (consulte la Figura 5), cada uno con 1000 µl como volumen preestablecido.

- Cambie los volúmenes preestablecidos de 1000 µl en los campos **Sample Volume** (volumen de muestras) y **Added Diluent** (diluyente añadido) que se utilizarán durante la preparación de las muestras.

Figura 5: Cuadro de diálogo Add Samples (añadir muestras): casilla de verificación Predilution (predilución) marcada
NOTA

La predilución se incluirá en el *factor de concentración*, del que se informa en los resultados de PCR para calcular la concentración de destino en la muestra original de los resultados de PCR (consulte el capítulo 10.21.6.1 Interpretación manual de los resultados). El cálculo lo realizan el usuario o el LIMS durante la importación de los resultados de PCR.

NOTA

La propiedad de predilución de una muestra puede editarse tras cerrar el cuadro de diálogo *Add Samples* (añadir muestras) marcando la casilla de verificación de la columna *Predilution* (predilución) de la tabla de muestras.

8. Haga clic en el botón *Add* (añadir) para añadir la muestra a la tabla de muestras.

9. Repita estos pasos hasta que se hayan añadido todas las muestras a la tabla de muestras.

10. Cuando se hayan añadido todas las muestras, haga clic en el botón *Close* (cerrar) para cerrar el cuadro de diálogo *Add Samples* (añadir muestras). Las muestras añadidas aparecen en la tabla de muestras de la pantalla de programación (consulte la Figura 6).
La lista de muestras puede ordenarse por columnas individuales haciendo clic en el encabezado de la columna. Pueden seleccionarse varias muestras manteniendo pulsada la **Tecla Mayús** o la **Tecla Ctrl** mientras hace clic en líneas de muestras. Las muestras seleccionadas pueden modificarse colectivamente haciendo clic en el símbolo de llave de tuerca en el encabezado de columna correspondiente. Pueden quitarse muestras de la lista seleccionándolas y haciendo clic en el botón **Delete** (eliminar) de la barra de herramientas.

11. Asigne el ensayo del kit AltoStar® Parvovirus B19 PCR Kit 1.5 a muestras específicas haciendo clic en la celda que esté en la fila de la muestra respectiva y en la columna del kit **AltoStar® Parvovirus B19 PCR Kit 1.5** (consulte la Figura 7).

12. Seleccione **quantitative** (cuantitativa) o **qualitative** (cualitativa) en el menú que aparece.
Figura 7: Pantalla de programación: asignación de ensayos PCR

Se selecciona automáticamente el conjunto correcto de **Standards and Controls** (estándares y controles) para la aplicación de ensayo cualitativa o cuantitativa. Además, el volumen de muestras necesario para la serie de purificación (el volumen muerto no se contabiliza) y el volumen de eluido que sigue disponible para asignarlo a otros ensayos se ajustan automáticamente en las columnas de la lista de muestras **Sample Volume** (volumen de muestras) y **Eluate left** (eluido restante), respectivamente.
NOTA
Ajustes del kit AltoStar® Parvovirus B19 PCR Kit 1.5:

- Para la aplicación de ensayo cuantitativa, se seleccionan QS1-4 y NTC y para la aplicación de ensayo cualitativa, se seleccionan QS4 y NTC.

- El volumen de muestras necesario es de 500 µl más el volumen muerto para el tubo de muestras correspondiente (consulte el capítulo 7.3 Volumen de muestras).

- El volumen de eluido necesario para el kit AltoStar® Parvovirus B19 PCR Kit 1.5 es de 10 µl.

NOTA
Si no es posible seleccionar el ensayo PCR para una muestra, compruebe en la columna Eluate left (eluido restante) de la tabla de muestras si el volumen necesario para este ensayo aún está disponible.

10.4.2 Importación desde LIMS
Tanto las propiedades de las muestras como la asignación de ensayos pueden importarse desde el LIMS. Para ello, haga clic en el botón Import File (Importar archivo) en la barra de herramientas. En el cuadro de diálogo que se abre, seleccione el archivo de importación (.psv) que contiene la información necesaria.

Para más información acerca de la integración de LIMS, póngase en contacto con el soporte técnico de altona Diagnostics (consulte el capítulo 14 Asistencia técnica).
10.5 Creación de una AltoStar® Run (serie)

Para el procesamiento, las muestras de la tabla de muestras deben asignarse a una AltoStar® Run (serie) que incluya la serie de purificación, así como una o más series de configuración de PCR y series PCR para una muestra concreta.

1. Marque la casilla de verificación Sample Priority (prioridad de las muestras) para las muestras que deban ordenarse en la misma PCR Plate (placa PCR) para agilizar el procesamiento.
 - Inicialmente, todas las muestras están marcadas en la columna Process Sample (muestra de proceso), lo que indica que las muestras respectivas deben incluirse en la AltoStar® Run (serie) que se genere a continuación.
 - Por encima de la tabla en la pantalla de programación (consulte la Figura 7), aparece Wells used (pocillos utilizados), que muestra el número de pocillos de AltoStar® Processing Plate (placa de procesamiento) necesarios para procesar las muestras marcadas actualmente en la columna Process Sample (muestra de proceso).
 - Pueden utilizarse hasta 96 pocillos en una serie de purificación.

NOTA

La AltoStar® Processing Plate (placa de procesamiento) es un consumible para series de purificación y contiene 96 pocillos que pueden utilizarse para procesar muestras. Las muestras con un volumen de procesamiento de 1000 µl necesitan dos pocillos de la AltoStar® Processing Plate (placa de procesamiento). Así, el número máximo de muestras que pueden procesarse en una serie de purificación varía y depende del número de muestras con un volumen de procesamiento de 1000 µl.

- Si se supera el número de 96 pocillos, no será posible crear la AltoStar® Run (serie) y Wells used (pocillos utilizados) aparecerá en rojo.

2. En ese caso, quite la selección de muestras en la columna Process Sample (muestra de proceso) hasta que Wells used (pocillos utilizados) muestre 96 o menos. El resto de las muestras aún marcadas en la columna Process Sample (muestra de proceso) se asignarán a la siguiente AltoStar® Run (serie).

3. Haga clic en el botón Create Run (crear serie) en la barra de herramientas de la pantalla de programación. Se muestra el cuadro de diálogo Save Run Definition (guardar definición de serie) (consulte la Figura 8).
NOTA

No es posible realizar más modificaciones a las muestras tras hacer clic en el botón **Create Run** (crear serie). Si es necesario realizar cambios en una AltoStar® Run (serie) creada, habrá que eliminarla y deberán repetirse la programación manual o la importación desde el LIMS.

4. Introduzca un **Run Name** (nombre de serie) único y, opcionalmente, una **Description** (descripción) para la posterior identificación de la AltoStar® Run (serie).

5. Haga clic en el botón **OK** (aceptar) para guardar la AltoStar® Run (serie).

Figura 8: Cuadro de diálogo Save Run Definition (guardar definición de serie)

Las muestras que se han asignado a una AltoStar® Run (serie) se quitan de la tabla de muestras de la pantalla de programación. Para crear más AltoStar® Runs (series) para el resto de las muestras de la tabla de muestras:

6. Seleccione hasta 96 de las muestras restantes en la columna **Process Sample** (muestra de proceso).

7. Haga clic en el botón **Create Run** (crear serie) y repita los pasos 4 y 5.
10.6 Inicio de una serie de purificación

1. Seleccione **Purification → Start Purification** (purificación → iniciar purificación) en la barra de menú. De forma alternativa, vuelva a la pantalla de inicio del AltoStar® Connect software y seleccione el botón **Start Purification** (iniciar purificación).

 • Se muestra la pantalla Start Purification Run (iniciar serie de purificación) (consulte la Figura 9). Cada AltoStar® Run (serie) programada incluye una serie de purificación.

 • Las series de purificación pendientes se muestran en la tabla **Programmed Purification Runs** (series de purificación programadas) en la parte izquierda de la pantalla.

 [Figura 9: Pantalla Start Purification Run (iniciar serie de purificación)]

2. Seleccione la serie de purificación que desea iniciar en la tabla **Programmed Purification Runs** (series de purificación programadas). Las muestras incluidas en la serie de purificación seleccionada se muestran en la tabla de la parte derecha de la pantalla [**Samples in selected Purification Run** (muestras en la serie de purificación seleccionada)].

 Antes de hacer clic en el botón **Start Run** (iniciar serie) de la barra de herramientas, prepare las muestras de la serie de purificación seleccionada y los reactivos, tal y como se describe en los capítulos 10.6.1 Preparación de las muestras y 10.6.2 Preparación de reactivos para una serie de purificación.
10.6.1 Preparación de las muestras

Para obtener resultados correctos, es necesario seguir con atención las especificaciones sobre el tipo de muestras, recogida de muestras, volumen de muestras, tubo de muestras y código de barras (consulte el capítulo 7 Muestras), así como con respecto a la preparación de las muestras.

1. Prepare todas las muestras que se utilizarán en la siguiente serie de purificación. Las muestras necesarias para la serie de purificación seleccionada aparecen en la tabla Samples in selected Purification Run (muestras en la serie de purificación seleccionada) a la derecha de la pantalla Start Purification Run (iniciar serie de purificación).

2. Proporcione un volumen de muestras de al menos 500 µl más el volumen muerto necesario en un tubo de muestras adecuado.

NOTA

Las muestras deben estar libres de sólidos y de componentes de alta viscosidad. Los sólidos y los componentes de alta viscosidad interferirán con la transferencia de muestras en el AltoStar® AM16 y las muestras no se procesarán.

NOTA

El sistema no comprueba el volumen de muestras antes del procesamiento. Las muestras con un volumen insuficiente no se procesarán y se marcarán con un error durante el paso de transferencia de muestras.

NOTA

Si es necesario prediluir las muestras: El diluyente de predilución, que no es compatible con esta aplicación, puede afectar a la estabilidad del ácido nucleico, la transferencia de muestras y el rendimiento de purificación.

10.6.1.1 Plasma

Las muestras de plasma sin sólidos ni componentes de alta viscosidad pueden procesarse sin pretratamiento en el AltoStar® AM16.
10.6.2 Preparación de reactivos para una serie de purificación

1. Asegúrese de preparar cantidades suficientes de reactivos no caducados que tengan todos el mismo número de carga.

El número de carga se compone de los 4 últimos dígitos del número de lote de los contenedores de Lysis Buffer (tampón de lisis) y Wash Buffer (tampón de lavado) y los tubos de Magnetic Beads (esferas magnéticas), Enhancer (amplificador) y Elution Buffer (tampón de elución).

NOTA

Para su comodidad, el número de carga de 4 dígitos (consulte la Figura 10) se muestra en la parte exterior de cada caja de componente.

Figura 10: Número de carga
NOTA

Antes de iniciar el procesamiento, el AltoStar® AM16 verifica automáticamente:

1) que hay presente suficiente volumen de reactivos de los componentes del kit AltoStar® Purification Kit 1.5 y del AltoStar® Internal Control 1.5 (control interno);

2) que los números de carga de los componentes del kit AltoStar® Purification Kit 1.5 cargados son congruentes.

2. Inspeccione visualmente si hay precipitados en el Lysis Buffer (tampón de lisis). Si se observan precipitados, caliéntela a menos de 50 °C. Oscile de forma intermitente el contenedor sin mojar el sello hasta que se disuelvan del todo los precipitados. El Lysis Buffer (tampón de lisis) puede experimentar ligeros cambios de color. Estos ligeros cambios de color no indican un cambio en la calidad de la solución.

3. Aplique un vortex en los tubos de Magnetic Beads (esferas magnéticas) durante 5 segundos. No moje la tapa. No centrifugue las Magnetic Beads (esferas magnéticas).

4. Descongele el número necesario de tubos de IC [AltoStar® Internal Control 1.5 (control interno)] y aplique un vortex durante 5 segundos.

10.6.3 Carga del instrumento para una serie de purificación

1. Haga clic en el botón Start Run (iniciar serie) en la barra de herramientas de la pantalla Start Purification Run (iniciar serie de purificación) para mostrar el cuadro de diálogo Loading (carga) (consulte la Figura 11).

El cuadro de diálogo Loading (carga) se compone de una representación visual de la plataforma del AltoStar® AM16 sobre una tabla que especifica el portador, los raíles respectivos en la plataforma del AltoStar® AM16 para cada portador, el material para cada portador y comentarios sobre la carga de los portadores.
Figura 11: Cuadro de diálogo Loading (carga)

Please load the following labware:

<table>
<thead>
<tr>
<th>Carrier</th>
<th>Track</th>
<th>Material</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - 6</td>
<td>Tips 1000 µl</td>
<td>Replace empty Tip Racks with completely filled new ones</td>
</tr>
<tr>
<td>2</td>
<td>7 - 12</td>
<td>Tips 300 µl</td>
<td>Replace empty Tip Racks with completely filled new ones</td>
</tr>
<tr>
<td>2</td>
<td>7 - 12</td>
<td>Eluate Plate</td>
<td>New Eluate Plate</td>
</tr>
<tr>
<td>3 - 4</td>
<td>13 - 16</td>
<td>Lysis Buffer</td>
<td>Wash Buffer 1</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>Enhancer Internal Control</td>
<td>Magnetic Beads</td>
</tr>
<tr>
<td>6 - 11</td>
<td>18 - 23</td>
<td>Samples</td>
<td>10 samples on up to 6 carriers</td>
</tr>
<tr>
<td>12</td>
<td>24 - 30</td>
<td>Processing Plate</td>
<td>One new Processing Plate</td>
</tr>
<tr>
<td>12</td>
<td>24 - 30</td>
<td>Tip Rack Plate</td>
<td>One new Processing Plate</td>
</tr>
<tr>
<td>12</td>
<td>24 - 30</td>
<td>Tip Rack Rack</td>
<td>Empty unused Tip Rack</td>
</tr>
</tbody>
</table>

- Reset 1000µl tip counter
- Reset 300µl tip counter
NOTA

Para visualizar la posición de un elemento en un portador y la posición del portador en la plataforma del AltoStar® AM16, seleccione la fila respectiva en la tabla del cuadro diálogo Loading (carga). Se visualiza la posición del elemento y de su portador:

1) Resaltada en rojo en la representación visual de la plataforma de instrumentos.

2) En el AltoStar® AM16, haciendo que parpadeen las luces de carga sobre los raíles en los que debe colocarse el portador seleccionado.

2. Cargue el material, los reactivos preparados y las muestras preparadas en los portadores adecuados de la forma siguiente:

<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Un portador de puntas</td>
<td>5 x bastidores de puntas de 1000 µl</td>
</tr>
</tbody>
</table>

- Únicamente cambie bastidores de puntas de 1000 µl completamente vacíos por bastidores de puntas de 1000 µl completamente llenos en el portador de puntas.

NOTA

El intercambio de bastidores de puntas que no están completamente vacíos y la manipulación de puntas individuales puede interferir con la gestión automática de las puntas y provocar cancelaciones de las series.
<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 - 12</td>
<td>Un portador de puntas y placas</td>
<td>3 x bastidores de puntas de 300 μl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x Eluate Plate (placa de eluidos)</td>
</tr>
</tbody>
</table>

- Únicamente cambie bastidores de puntas de 300 μl **completamente vacíos** por bastidores de puntas de 300 μl **completamente llenos** en el portador de puntas y placas.
- Coloque la Eluate Plate (placa de eluidos) con el pocillo A1 a la izquierda de la posición de la placa negra. La posición de la placa en la parte frontal no se utiliza durante las series de purificación.

NOTA

El intercambio de bastidores de puntas que no están completamente vacíos y la manipulación de puntas individuales puede interferir con la gestión automática de las puntas y provocar cancelaciones de las series.
Cargue uno o dos portadores de contenedor con hasta ocho contenedores de Lysis Buffer (tampón de lisis), Wash Buffer (tampón de lavado) 1, Wash Buffer (tampón de lavado) 2 y Wash Buffer (tampón de lavado) 3.

Empuje suavemente los contenedores hasta la parte inferior del portador.

Retire todas las láminas sellantes de los contenedores y deséchelas.

NOTA

Iniciar una serie de purificación con las láminas sellantes aún puestas en los contenedores podría provocar que la serie se cancelase durante el procesamiento.

NOTA

La posición de los contenedores individuales en los portadores respectivos es arbitraria.
Cargue un portador de 24 tubos con hasta 24 tubos de IC, Magnetic Beads (esferas magnéticas), Enhancer (amplificador) y Elution Buffer (tampón de elución).

Empuje suavemente los tubos hasta la parte inferior del portador y gire los tubos hasta que los códigos de barras de los tubos sean visibles a través de las ventanas del portador.

Quite todas las tapas de los tubos y guárdelas para reutilizarlas.

Almacene las tapas para su reutilización en un espacio limpio.

NOTA

Si se reutilizan tapas para tubos que no sean los originales se puede producir contaminación cruzada.

La posición de los tubos individuales en el portador es arbitraria.

Iniciar una serie de purificación con las tapas aún puestas en los tubos podría provocar que la serie se cancelase durante el procesamiento.
AltoStar® Parvovirus B19 PCR Kit 1.5

<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 23</td>
<td>De uno a seis portadores de 32 tubos para tubos de muestras de entre 11 y 14 mm de diámetro</td>
<td>Muestras preparadas para la serie de purificación que va a iniciarse</td>
</tr>
</tbody>
</table>

- Cargue las muestras preparadas para la serie de purificación en hasta seis portadores de muestras. Pueden utilizarse dos tipos de portadores en paralelo en la misma serie:
 - Para tubos de muestras con diámetros externos de 11 a 14 mm, utilice el portador de 32 tubos.
 - Para tubos de muestras con diámetros externos de 14,5 a 18 mm, utilice el portador de 24 tubos.
- Empuje suavemente los tubos hasta la parte inferior del portador y gire los tubos hasta que los códigos de barras de los tubos sean visibles a través de las ventanas del portador.

NOTA

La posición de los tubos individuales en los portadores es arbitraria.
NOTA

Iniciar una serie de purificación con las tapas aún puestas en los tubos podría provocar que la serie se cancelase durante el procesamiento.

<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
</table>
| 24 - 30 | Portador de agitador calentador
Este portador no es extraíble. Los elementos se colocan manualmente en el portador del instrumento. | 1 x AltoStar® Processing Plate (placa de procesamiento)
1 x placa de estacionamiento de puntas
1 x bastidor de estacionamiento de puntas |

- Coloque una placa de estacionamiento de puntas sin usar en la posición frontal y un bastidor de estacionamiento de puntas sin usar en la parte superior de la posición frontal y asegúrese de que ambos elementos estén encajados en sus posiciones respectivas.
- Coloque una AltoStar® Processing Plate (placa de procesamiento) sin usar en la segunda posición desde la parte frontal y asegúrese de que está encajada en su posición.

3. Cargue los portadores con el código de barras del portador hacia la parte posterior mirando a la derecha.

4. Inserte los portadores rellenados en los raíles respectivos entre los bloques deslizantes delanteros y traseros de la bandeja de carga hasta que toquen los ganchos de parada en la parte alejada de la bandeja.
NOTA

Empujar los portadores más allá de los ganchos de parada puede dañar el instrumento e interferir con el proceso de carga.

5. Compruebe que la hoja de ejección de puntas y el contenedor de puntas desechadas estén en la posición correcta y que se haya colocado una nueva bolsa de desechos en el contenedor.

6. Haga clic en OK (aceptar) en el cuadro de diálogo Loading (carga) para continuar con el proceso de carga.

NOTA

Al hacer clic en Cancel (cancelar), se cancelará la serie de purificación, pero puede volver a iniciarse (consulte el capítulo 10.6 Inicio de una serie de purificación).

Se muestra el cuadro de diálogo Tip Park Plate (placa de estacionamiento de puntas) (consulte la Figura 12).
7. Escanee el código de barras de la placa de estacionamiento de puntas por duplicado con el escáner de código de barras de mano para garantizar que la placa no se ha utilizado en series anteriores.

8. Haga clic en OK (aceptar) para confirmar la introducción.

El AltoStar® AM16 introduce los portadores en el instrumento y realiza las verificaciones de código de barras y de volumen de reactivo.
NOTA

El AltoStar® AM16 verifica automáticamente:

1) Tipo y localización correctos de los portadores cargados
2) Identidad y posición correctas de los elementos cargados en los portadores
3) Congruencia de lote de los componentes del kit AltoStar® Purification Kit 1.5 [Lysis Buffer (tampón de lisis), Wash Buffers (tampones de lavado), Magnetic Beads (esferas magnéticas), Enhancer (amplificador) y Elution Buffer (tampón de elución)]
4) No caducidad de todos los reactivos cargados
5) Presencia de suficientes volúmenes de reactivo
6) Singularidad de los códigos de barras de muestras
7) Posición correcta de los elementos cargados manualmente en el portador de agitador calentador
8) Posición correcta de la hoja de eyección de puntas

Si no se supera alguna de estas comprobaciones, se presenta al usuario un cuadro de diálogo de mensaje que especifica el problema en cuestión, con instrucciones para corregirlo adecuadamente. Para obtener más información sobre la gestión de errores, consulte el manual IVD del operador del AltoStar® Connect software (Hamilton, capítulo 4 Solución de problemas y mensajes de error).

NOTA

Alterar la posición de algún elemento cargado cuando el portador ya se haya introducido en el instrumento provoca la cancelación de la serie de purificación y daños en el instrumento.

Cuando se hayan superado todas las comprobaciones, se muestra el cuadro de diálogo **Loading complete** (carga completa) (consulte la Figura 13).
9. Confirme el cuadro de diálogo Loading complete (carga completa) haciendo clic en OK (aceptar) o espere 10 segundos a que se produzca el inicio automático del proceso.

NOTA

Al hacer clic en Cancel (cancelar), se cancelará la serie de purificación, pero puede volver a iniciarse (consulte el capítulo 10.6 Inicio de una serie de purificación).

Se inicia la serie de purificación, que se realizará sin interacción del usuario.

10.7 Durante la serie de purificación

No se requiere más interacción del usuario hasta que finaliza la serie de purificación. Se abre la pantalla Processing Status (estado del procesamiento) (consulte la Figura 14) que muestra el estado de la serie de purificación y una estimación del tiempo restante.
Figura 14: Pantalla Processing Status (estado del procesamiento)

NOTA

Empujar los portadores o tirar de ellos o de la puerta del AltoStar® AM16 durante una serie de purificación podría anular la serie.

NOTA

Anular la serie de purificación después de que se confirme el cuadro de diálogo *Loading complete* (carga completa) invalidará la AltoStar® Run (serie), lo que impedirá el reinicio. Para repetir series anuladas, consulte el manual IVD del operador del AltoStar® Connect software (Hamilton, capítulo 3.8.14 Resultados de purificación).
NOTA

Una vez finalizada la transferencia de muestras en la AltoStar® Processing Plate (placa de procesamiento), los portadores de muestras pueden descargarse en cualquier momento. El botón **Unload samples** (descargar muestras) de la barra de herramientas estará activo y puede hacerse clic en él. Los portadores de muestras se descargarán de la plataforma y podrán retirarse los tubos de muestras. La serie de purificación no se interrumpirá.

NOTA

Puede obtenerse una vista preliminar de los componentes del kit AltoStar® Parvovirus B19 PCR Kit 1.5 necesarios para la siguiente serie de configuración de PCR para permitir la preparación de estos componentes durante la serie de purificación anterior:

1. Haga clic en **PCR Setup → Start PCR Setup** (configuración de PCR → iniciar configuración de PCR) en la barra de menú para acceder a la pantalla **Start PCR Setup Run** (iniciar serie de configuración de PCR).

2. Consulte las tablas **Controls in selected PCR Setup Run** (controles en la serie de configuración de PCR seleccionada) y **Required master tubes for the selected PCR Setup Run** (tubos maestros necesarios para la serie de configuración de PCR seleccionada) para obtener información sobre los componentes necesarios.

3. Vuelva a la serie de purificación en curso haciendo clic en **Purification → Current Purification** (purificación → purificación actual) en la barra de menú.
10.8 Fin de la serie de purificación
Al final de la serie de purificación, se muestra el cuadro de diálogo Run finished (serie finalizada) (consulte la Figura 15).

Figura 15: Cuadro de diálogo Run finished (serie finalizada)

1. Asegúrese de que la bandeja de carga está vacía.
2. Confirme el cuadro de diálogo Run finished (serie finalizada) haciendo clic en OK (aceptar).

El AltoStar® AM16 descargará los portadores. Asegúrese de no interponerse en el recorrido de los portadores que están descargándose.

Tras la descarga, se muestra el cuadro de diálogo Maintenance (mantenimiento) (consulte la Figura 16).

3. Siga las instrucciones del cuadro de diálogo Maintenance (mantenimiento).
La tabla del cuadro de diálogo muestra componentes del kit AltoStar® Purification Kit 1.5 y del IC [AltoStar® Internal Control 1.5 (control interno)] con volúmenes suficientes para reutilizarse en series de purificación posteriores.

1. Si una serie de configuración de PCR que utiliza la Eluate Plate (placa de eluidos) cargada actualmente va a iniciarse directamente después de la serie de purificación, la placa de eluidos puede permanecer en la posición del portador a temperatura ambiente (máx. 30 °C) hasta 6 horas. Si no se inicia la serie de configuración de PCR directamente tras la serie de purificación, selle y almacene la Eluate Plate (placa de eluidos) como se describe en el capítulo 10.10.2 Sellado de la Eluate Plate (placa de eluidos).

2. Cierre los tubos con los tapones de tubos adecuados. Evite intercambiar los tapones de los tubos al cerrar los reactivos tras su uso.

3. Cierre los contenedores con AltoStar® Container Re-Sealing Foil (lámina resellante para los contenedores) sin usar.

4. Almacene los reactivos para su reutilización como se describe en los capítulos 4 Almacenamiento y manipulación de las instrucciones de uso del kit AltoStar® Purification Kit 1.5 y del AltoStar® Internal Control 1.5 (control interno) respectivamente.

5. Deseche los componentes del kit AltoStar® Purification Kit 1.5 y del AltoStar® Internal Control 1.5 (control interno) no incluidos en la tabla.
Deseche las muestras y los materiales utilizados (consulte el capítulo 11 Eliminación).

6. Confirme el cuadro de diálogo **Maintenance** (mantenimiento) haciendo clic en **OK** (aceptar).

PRECAUCIÓN

Trate siempre las muestras como si fueran infecciosas y (bio)peligrosas conforme a los procedimientos seguros de laboratorio. Si se derrama material de las muestras, utilice rápidamente un desinfectante adecuado. Manipule los materiales contaminados como si fueran biopeligrosos.

NOTA

Los desechos líquidos y cualquier líquido que incluya Lysis Buffer (tampón de lisis) o Wash Buffer 1 (tampón de lavado) contienen tiocianato de guanidinio, que puede formar compuestos tóxicos, muy reactivos y volátiles cuando se combinan con lejía o ácidos fuertes.

NOTA

Las instrucciones para el procedimiento de mantenimiento diario para la eliminación de desechos líquidos y materiales usados se pueden encontrar en el manual IVD del operador del AltoStar® AM16 (Hamilton, capítulo 3.5 Mantenimiento).
10.9 Resultados de serie de purificación

Los resultados de serie de purificación se guardan en el AltoStar® Connect software.

1. Haga clic en Purification → Purification Results (purificación → resultados de la purificación) en la barra de menú para acceder a la pantalla de resultados (consulte la Figura 17).

La pantalla de resultados muestra una tabla con todas las muestras utilizadas en la última serie de purificación y una columna de Status (estado) a la derecha que indica si se ha realizado completamente la serie de purificación para una muestra concreta (consulte la Tabla 6).
Tabla 6: Resultados de serie de purificación

<table>
<thead>
<tr>
<th>Status (estado)</th>
<th>Resultado de serie de purificación</th>
</tr>
</thead>
</table>
| **Procesado** | • La muestra se ha procesado correctamente en la serie de purificación.
 | • El eluido respectivo está listo para su uso en una serie de configuración de PCR. |
| **Error** | • La muestra no se ha procesado correctamente.
 | • No hay eluido de esta muestra disponible.
 | • La muestra se omitirá automáticamente de las siguientes series de configuración de PCR. |

2. Para ver los resultados de series de purificación anteriores, haga clic en el botón **Load** (cargar) de la barra de menú, seleccione la serie de purificación deseada en la lista del cuadro de diálogo **Load Results** (cargar resultados) que se abre y haga clic en **OK** (aceptar).

El AltoStar® Connect software genera automáticamente dos archivos de resultados de serie de purificación:

- Un archivo LIMS (.xml) para transferir información detallada sobre la serie de purificación, incluidos los resultados, de nuevo al LIMS.
- Un informe (.pdf) que contiene información detallada sobre la serie de purificación, incluidos los resultados para fines de documentación.

Estos archivos se guardan en la ubicación especificada en los System Settings (ajustes del sistema) del AltoStar® Connect software.

NOTA

Los archivos de resultados de serie de purificación pueden volver a generarse cargando la serie de purificación respectiva y haciendo clic en el botón **Create LIMS File** (crear archivo LIMS) para generar el archivo LIMS, o en el botón **Create Report** (crear informe) para generar el informe.
10.10 Estabilidad del eluido
Tras completarse la serie de purificación, los eluidos de la Eluate Plate (placa de eluidos) sin sellar son estables a temperatura ambiente (máx. 30 °C) durante un total de 6 horas.

PRECAUCIÓN

El almacenamiento de eluidos en condiciones incorrectas puede provocar la degradación de la secuencia objetivo de parvovirus B19.

10.10.1 Almacenamiento
Los eluidos en una Eluate Plate (placa de eluidos) sellada [consulte el capítulo 10.10.2 Sellado de la Eluate Plate (placa de eluidos)] pueden almacenarse a una temperatura de 2 °C a 8 °C durante hasta 24 horas antes del inicio de una serie de configuración de PCR.

PRECAUCIÓN

El almacenamiento de eluidos en condiciones incorrectas puede provocar la degradación de la secuencia objetivo de parvovirus B19.

10.10.2 Sellado de la Eluate Plate (placa de eluidos)
Si es necesario almacenar los eluidos de la Eluate Plate (placa de eluidos), la placa debe sellarse con la AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos). Se recomienda utilizar el AltoStar® Plate Sealer (sellador de placas). La idoneidad de los selladores de placas distintos al AltoStar® Plate Sealer (sellador de placas) debe evaluarla el usuario.
NOTE

Utilizar selladores de placas o parámetros de sellado inadecuados puede dañar los eluidos, así como la Eluate Plate (placa de eluidos), la AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos) y el Plate Sealer (sellador de placas).

Si se utiliza el AltoStar® Plate Sealer (sellador de placas) para sellar, proceda de este modo:

1. Encienda el AltoStar® Plate Sealer (sellador de placas) y asegúrese de que el adaptador de placas no esté en el cajón.
2. Asegúrese de que los ajustes del AltoStar® Plate Sealer (sellador de placas) son los siguientes: 170 °C y 2 segundos.
3. Espere a que se alcance la temperatura de 170 °C. Esto puede tardar unos minutos.
4. Coloque la Eluate Plate (placa de eluidos) sobre el adaptador de placas del AltoStar® Plate Sealer (sellador de placas).
5. Coloque una AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos) sobre la Eluate Plate (placa de eluidos). Alinee la esquina de corte de la lámina sellante con la esquina de corte de la Eluate Plate (placa de eluidos). Asegúrese de que todos los pocillos de la Eluate Plate (placa de eluidos) están cubiertos por la lámina. Preste especial atención a que el pocillo de la esquina de corte esté cubierto correctamente.

NOTA

El uso del AltoStar® Plate Sealer (sellador de placas) sin el adaptador de placas colocado en el cajón puede inhabilitar el sellador. En este caso, póngase en contacto con el soporte técnico de altona Diagnostics si necesita ayuda (consulte el capítulo 14 Asistencia técnica).
NOTA

Si la AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos) o el bastidor están mal colocados, la lámina podría quedarse pegada a la placa calentadora del interior del AltoStar® Plate Sealer (sellador de placas) durante el sellado. Esto inutilizará el sellador. Si sucede, deje que el AltoStar® Plate Sealer (sellador de placas) se enfríe hasta alcanzar la temperatura ambiente y póngase en contacto con el soporte técnico de altona Diagnostics si necesita ayuda (consulte el capítulo 14 Asistencia técnica).

6. Ensamble el bastidor de sellado en la parte superior para sujetar la lámina sellante.

7. Abra el cajón con el botón Operate (operar).

8. Coloque el ensamblaje que se compone del adaptador de placas, la Eluate Plate (placa de eluidos), la AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos) y el bastidor de sellado en el AltoStar® Plate Sealer (sellador de placas) y pulse el botón Operate (operar).

9. El cajón se cierra automáticamente, sella durante 2 segundos y se vuelve a abrir automáticamente.

10. Saque la Eluate Plate (placa de eluidos) sellada y el adaptador de placas del AltoStar® Plate Sealer (sellador de placas) y cierre el AltoStar® Plate Sealer (sellador de placas) pulsando el botón Close (cerrar).

10.10.3 Eliminación del sellado de la Eluate Plate (placa de eluidos)

Quite la AltoStar® Eluate Plate Sealing Foil (lámina sellante para placas de eluidos) de la Eluate Plate (placa de eluidos) del siguiente modo:

1. Centrifugue brevemente la Eluate Plate (placa de eluidos) en una centrífuga de placas para retirar cualquier líquido del interior de la lámina sellante.

2. Presione la Eluate Plate (placa de eluidos) sobre una mesa para evitar movimientos súbitos de la placa al retirar la lámina sellante.

3. Empiece a despegar por una esquina y vaya tirando de manera lenta y constante de la lámina sellante hacia la esquina diagonalmente opuesta hasta retirarla.
10.11 Inicio de una serie de configuración de PCR

1. Seleccione PCR Setup → Start PCR Setup (configuración de PCR → iniciar configuración de PCR) en la barra de menú. De forma alternativa, vuelva a la pantalla de inicio del AltoStar® Connect software y seleccione el botón Start PCR Setup (iniciar configuración de PCR). Se muestra la pantalla Start PCR Setup Run (iniciar serie de configuración de PCR) (consulte la Figura 18).

Las series de configuración de PCR pendientes se muestran en la tabla Programmed PCR Setup Runs (series de configuración de PCR programadas) en la parte izquierda de la pantalla.

Figura 18: Pantalla Start PCR Setup Run (iniciar serie de configuración de PCR)

2. Seleccione la serie de configuración de PCR que desea iniciar en la tabla Programmed PCR Setup Runs (series de configuración de PCR programadas).
• Las muestras incluidas en la serie de configuración de PCR seleccionada se muestran en la tabla de la parte superior derecha de la pantalla [Samples in selected PCR Setup Run (muestras en la serie de configuración de PCR seleccionada)].

• Los estándares de cuantificación y controles necesarios para la serie de configuración de PCR seleccionada se muestran en la tabla de la parte central derecha de la pantalla [Controls in selected PCR Setup Run (controles en la serie de configuración de PCR seleccionada)].

• El número de tubos maestros necesarios para la serie de configuración de PCR seleccionada se muestra en la tabla de la parte inferior derecha de la pantalla [Required master tubes for the selected PCR Setup Run (tubos maestros necesarios para la serie de configuración de PCR seleccionada)].

NOTA

El número de muestras priorizadas en una serie de configuración de PCR se muestra en la columna No. of prioritized Samples (n.° de muestras priorizadas). Realice series de configuración de PCR con muestras priorizadas primero para facilitar un procesamiento más rápido de las muestras priorizadas.

Antes de hacer clic en el botón Start Run (iniciar serie) de la barra de herramientas, prepare los reactivos necesarios como se describe en el capítulo 10.12 Preparación de reactivos para una serie de configuración de PCR. Si la Eluate Plate (placa de eluidos) necesaria para la serie de configuración de PCR seleccionada se ha sellado para su almacenamiento, prepárela como se describe en el capítulo 10.10.3 Eliminación del sellado de la Eluate Plate (placa de eluidos).
10.12 Preparación de reactivos para una serie de configuración de PCR

1. Descongele los estándares de cuantificación, los controles y el número necesario de tubos maestros completamente a temperatura ambiente (máximo 30 °C).

2. Mezcle los reactivos aplicando un vortex suave.

3. Centrifugue los tubos brevemente para quitar las gotas de la tapa.

PRECAUCIÓN

La ausencia de centrífugación de los componentes del producto tras la descongelación podría provocar la contaminación de los componentes con restos de reactivos en las tapas y, como consecuencia, podría perjudicar el rendimiento del producto.
10.12.1 Carga del AltoStar® AM16 para una serie de configuración de PCR

1. Haga clic en el botón **Start Run** (iniciar serie) en la barra de herramientas de la pantalla **Start PCR Setup Run** (iniciar serie de configuración de PCR) para mostrar el cuadro de diálogo **Loading** (carga) (consulte la Figura 19).

Figura 19: Cuadro de diálogo Loading (carga)
El cuadro de diálogo **Loading** (carga) se compone de una representación visual de la plataforma del AltoStar® AM16 sobre una tabla que especifica los portadores, los raíles respectivos en la plataforma del AltoStar® AM16 para cada portador, el material que debe cargarse en cada portador y comentarios sobre la carga de los portadores.

NOTA

Para visualizar la posición de un elemento en un portador y la posición del portador en la plataforma del AltoStar® AM16, seleccione la fila respectiva en la tabla del cuadro diálogo **Loading** (carga).

Se visualiza la posición del elemento y de su portador:

1) Resaltada en rojo en la representación visual de la plataforma de instrumentos.

2) En el AltoStar® AM16, haciendo que parpadeen las luces de carga sobre los raíles en los que debe colocarse el portador seleccionado.

2. Cargue el material necesario, la Eluate Plate (placa de eluidos) preparada y los reactivos preparados en los portadores adecuados del modo siguiente:

<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Un portador de puntas</td>
<td>5 x bastidores de puntas de 1000 μl</td>
</tr>
</tbody>
</table>

- Únicamente cambie bastidores de puntas de 1000 μl **completamente vacíos** por bastidores de puntas de 1000 μl **completamente llenos** en el portador de puntas.
NOTA

El intercambio de bastidores de puntas que no están completamente vacíos y la manipulación de puntas individuales puede interferir con la gestión automática de las puntas y provocar cancelaciones de las series.

<table>
<thead>
<tr>
<th>Raíl</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 - 12</td>
<td>Un portador de puntas y placas</td>
<td>3 x bastidores de puntas de 300 μl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x Eluate Plate (placa de eluidos)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x PCR Plate (placa PCR)</td>
</tr>
</tbody>
</table>

- Únicamente cambie bastidores de puntas de 300 μl **completamente vacíos** por bastidores de puntas de 300 μl **completamente llenos** en el portador de puntas y placas.
- Coloque la Eluate Plate (placa de eluidos) necesaria con el pocillo A1 a la izquierda de la posición de la placa negra.
- Coloque una PCR Plate (placa PCR) con el pocillo A1 a la izquierda de la posición de la placa plateada frontal.

NOTA

El intercambio de bastidores de puntas que no están completamente vacíos y la manipulación de puntas individuales puede interferir con la gestión automática de las puntas y provocar cancelaciones de las series.
Descripción de portador

<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Un portador de 24 tubos</td>
<td>1 tubo de agrupación por ensayo</td>
</tr>
</tbody>
</table>

- Cargue un portador de 24 tubos con un tubo de agrupación sin utilizar para cada ensayo en la serie de configuración de PCR.
- Empuje suavemente los tubos hasta la parte inferior del portador y gire los tubos hasta que los códigos de barras de los tubos sean visibles a través de la ventana del portador.

NOTA

La posición de los tubos individuales en el portador es arbitraria.
Descripción de portador y Material que debe cargarse

<table>
<thead>
<tr>
<th>Rail</th>
<th>Descripción de portador</th>
<th>Material que debe cargarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 - 17</td>
<td>De uno a cuatro portadores de 32 tubos de reactivo</td>
<td>Componentes del ensayo</td>
</tr>
</tbody>
</table>

- Cargue el portador de 32 tubos de reactivo con los componentes del ensayo necesarios para la serie de configuración de PCR.
- Empuje suavemente los tubos hasta la parte inferior del portador y gire los tubos hasta que los códigos de barras de los tubos sean visibles a través de la ventana del portador.

NOTA

La posición de los tubos individuales en los portadores es arbitraria.

NOTA

El sistema no comprueba el volumen de los componentes cargados antes del procesamiento. Un volumen de componentes insuficiente impedirá la correcta configuración de PCR para el ensayo en cuestión.
NOTA

Inicio una serie de configuración de PCR con las tapas aún puestas en los tubos podría provocar que la serie se cancelase durante el procesamiento.

3. Cargue los portadores con el código de barras del portador hacia la parte posterior mirando a la derecha.

4. Inserte los portadores rellenados en los raíles respectivos entre los bloques deslizantes delanteros y traseros de la bandeja de carga hasta que toquen los ganchos de parada en la parte alejada de la bandeja.

NOTA

Empujar los portadores más allá de los ganchos de parada puede dañar el instrumento e interferir con el proceso de carga.

5. Compruebe que la hoja de eyeción de puntas y el contenedor de puntas desechadas estén en la posición correcta y que se haya colocado una nueva bolsa de desechos en el contenedor.

6. Haga clic en OK (aceptar) en el cuadro de diálogo Loading (carga) para continuar con el proceso de carga.

NOTA

Al hacer clic en Cancel (cancelar), se cancelará la serie de configuración de PCR, pero puede volver a iniciarse (consulte el capítulo 10.11 Inicio de una serie de configuración de PCR).

El AltoStar® AM16 introduce los portadores en el instrumento y realiza la verificación del código de barras.
NOTA

El AltoStar® AM16 verifica automáticamente:

1) Tipo y localización correctos de los portadores cargados

2) Identidad y posición correctas de los elementos cargados en los portadores

3) Congruencia de lote de los componentes de los kits de ensayos AltoStar® individuales

4) No caducidad de todos los componentes de ensayos AltoStar® cargados

5) Posición correcta de la hoja de eyección de puntas

Si no se supera alguna de estas comprobaciones, se presenta al usuario un cuadro de diálogo de mensaje que especifica el problema en cuestión, con instrucciones para corregirlo adecuadamente. Para obtener más información sobre la gestión de errores, consulte el manual IVD del operador del AltoStar® Connect software (Hamilton, capítulo 4 Solución de problemas y mensajes de error).

NOTA

Alterar la posición de algún elemento cargado cuando el portador ya se ha introducido en el instrumento puede provocar la cancelación de la serie de configuración de PCR y/o daños en el instrumento.

Cuando se hayan superado todas las comprobaciones, se muestra el cuadro de diálogo Loading complete (carga completa) (consulte la Figura 20).
Figura 20: Cuadro de diálogo Loading complete (carga completa)

7. Confirme el cuadro de diálogo **Loading complete** (carga completa) haciendo clic en **OK** (aceptar) o espere 10 segundos a que se produzca el inicio automático del proceso.

NOTA

Al hacer clic en **Cancel** (cancelar), se cancelará la serie de configuración de PCR, pero puede volver a iniciarse (consulte el capítulo 10.11 Inicio de una serie de configuración de PCR).

Se inicia la serie de configuración de PCR, que se realizará sin interacción del usuario.
10.13 Durante la serie de configuración de PCR

No se requiere más interacción del usuario hasta que finaliza la serie de configuración de PCR. Se abre la pantalla Processing Status (estado del procesamiento) (consulte la Figura 21), que muestra el estado de la serie de configuración de PCR y una estimación del tiempo restante.

![Figura 21: Pantalla Processing Status (estado del procesamiento)](image)

NOTA

Empujar los portadores o tirar de ellos o de la puerta del AltoStar® AM16 durante una serie de configuración de PCR podría anular la serie.
10.14 Fin de la serie de configuración de PCR

Al final de la serie de configuración de PCR, se muestra el cuadro de diálogo **Run finished** (serie finalizada) (consulte la Figura 22).

![Run finished](image)

Figura 22: Cuadro de diálogo Run finished (serie finalizada)

1. Asegúrese de que la bandeja de carga está vacía.
2. Confirme el cuadro de diálogo **Run finished** (serie finalizada) haciendo clic en **OK** (aceptar).

El AltoStar® AM16 descargará los portadores. Asegúrese de no interponerse en el recorrido de los portadores que están descargándose.

Tras la descarga, se muestra el cuadro de diálogo **Maintenance** (mantenimiento) (consulte la Figura 23).

3. Siga las instrucciones del cuadro de diálogo **Maintenance** (mantenimiento).
Figura 23: Cuadro de diálogo Maintenance (mantenimiento)

La tabla del cuadro de diálogo muestra el número de reacciones en los tubos maestros que no se han utilizado en la serie de configuración de PCR.

4. Si se va a iniciar inmediatamente otra serie de configuración de PCR que utiliza la Eluate Plate (placa de eluidos) cargada actualmente, la Eluate Plate (placa de eluidos) puede permanecer sin sellar en la posición del portador. Si no es el caso, selle y almacene la Eluate Plate (placa de eluidos) como se describe en el capítulo 10.10.2 Sellado de la Eluate Plate (placa de eluidos).

NOTA

Los eluidos de la Eluate Plate (placa de eluidos) son estables a temperatura ambiente (máx. 30 °C) durante un total de 6 horas tras completarse la serie de purificación.

5. Cierre los tubos de reactivo con los tapones de tubos adecuados sin usar.

PRECAUCIÓN

No reutilice los tapones de tubos para evitar la contaminación de los reactivos.

6. Almacene los reactivos para su reutilización como se describe en el capítulo 4.2 Manipulación.
7. Deseche los materiales utilizados (consulte el capítulo 11 Eliminación).

8. Confirme el cuadro de diálogo Maintenance (mantenimiento) haciendo clic en OK (aceptar).

10.15 Resultados de serie de configuración de PCR

Los resultados de serie de configuración de PCR se guardan en el AltoStar® Connect software.

1. Haga clic en PCR Setup → PCR Setup Results (configuración de PCR → resultados de la configuración de PCR) en la barra de menú para acceder a la pantalla de resultados (consulte la Figura 24).

![Figura 24: Pantalla de resultados](image_url)

La pantalla de resultados muestra una tabla con todas las muestras utilizadas en la última serie de configuración de PCR y una columna de Status (estado) a la derecha que indica si se ha realizado completamente el proceso de configuración de PCR para una muestra concreta (consulte la Tabla 7).
Tabla 7: Resultados de serie de configuración de PCR

<table>
<thead>
<tr>
<th>Estado</th>
<th>Resultado de serie de configuración de PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procesado</td>
<td>• El eluido se ha procesado correctamente en la serie de configuración de PCR.</td>
</tr>
<tr>
<td></td>
<td>• La mezcla de PCR resultante está lista para su uso en una serie PCR.</td>
</tr>
<tr>
<td>Error</td>
<td>• El eluido no se ha procesado correctamente.</td>
</tr>
<tr>
<td></td>
<td>• La mezcla de PCR respectiva se omitirá automáticamente en el siguiente análisis de PCR.</td>
</tr>
</tbody>
</table>

2. Para ver los resultados de series de configuración de PCR anteriores, haga clic en el botón **Load** (cargar) de la barra de menú, seleccione la serie de configuración de PCR deseada en la lista del cuadro de diálogo **Load Results** (cargar resultados) que se abre y haga clic en **OK** (aceptar).

El AltoStar® Connect software genera automáticamente tres archivos de resultado de serie de configuración de PCR:

- Un archivo LIMS (.xml) para transferir información detallada sobre la serie de configuración de PCR, incluidos los resultados de nuevo al LIMS
- Un informe (.pdf) que contiene información detallada sobre la serie de configuración de PCR, incluidos los resultados para fines de documentación
- Un archivo de ciclador (.plrn) para la programación automática del CFX96™ DW Dx

Estos archivos se guardan en la ubicación especificada en los System Settings (ajustes del sistema) del AltoStar® Connect software.

NOTA

Los archivos de resultado de serie de configuración de PCR pueden volver a generarse cargando la serie de configuración de PCR respectiva y haciendo clic en el botón **Create LIMS File** (crear archivo LIMS) para generar el archivo LIMS, en el botón **Create Report** (crear informe) para generar el informe o en el botón **Create Bio-Rad Cycler File** (crear archivo del termociclador Bio-Rad) para generar el archivo del termociclador.
10.16 Sellado de la PCR Plate (placa PCR)

Tras completar la serie de configuración de PCR, la PCR Plate (placa PCR) debe sellarse con la AltoStar® PCR Plate Sealing Foil (lámina sellante para placa PCR). Se recomienda utilizar el AltoStar® Plate Sealer (sellador de placas). La idoneidad de los selladores de placas distintos al AltoStar® Plate Sealer (sellador de placas) debe evaluarla el usuario.

Si se utiliza el AltoStar® Plate Sealer (sellador de placas) para sellar, proceda de este modo:

1. Encienda el AltoStar® Plate Sealer (sellador de placas) y asegúrese de que el adaptador de placas no está en el cajón.

2. Asegúrese de que los ajustes del AltoStar® Plate Sealer (sellador de placas) son los siguientes: 170 °C y 2 segundos.

3. Espere a que se alcance la temperatura de 170 °C. Esto puede tardar unos minutos.

4. Coloque la PCR Plate (placa PCR) sobre el adaptador de placas del AltoStar® Plate Sealer (sellador de placas).

5. Coloque una AltoStar® PCR Plate Sealing Foil (lámina sellante para placa PCR) sobre la PCR Plate (placa PCR). Alinee la esquina de corte de la lámina sellante con la esquina de corte de la PCR Plate (placa PCR). Asegúrese de que todos los pocillos de la PCR Plate (placa PCR) están cubiertos por la lámina. Preste especial atención a que el pocillo de la esquina de corte esté cubierto correctamente.

NOTA

El uso del AltoStar® Plate Sealer (sellador de placas) sin el adaptador de placas colocado en el cajón puede inhabilitar el sellador. En este caso, póngase en contacto con el soporte técnico de altona Diagnostics si necesita ayuda (consulte el capítulo 14 Asistencia técnica).
NOTA

Si la AltoStar® PCR Plate Sealing Foil (lámina sellante para placas de PCR) o el bastidor están mal colocados, la lámina podría quedarse pegada a la placa calentadora del interior del AltoStar® Plate Sealer (sellador de placas) durante el sellado. Esto inutilizará el sellador. Si sucede, deje que el AltoStar® Plate Sealer (sellador de placas) se enfríe hasta alcanzar la temperatura ambiente y póngase en contacto con el soporte técnico de altona Diagnostics si necesita ayuda (consulte el capítulo 14 Asistencia técnica).

6. Ensamble el bastidor de sellado en la parte superior para sujetar la lámina sellante.

7. Abra el cajón pulsando el botón Operate (operar).

8. Coloque el ensamblaje que se compone del adaptador de placas, la PCR Plate (placa PCR), la AltoStar® PCR Plate Sealing Foil (lámina sellante para placa PCR) y el bastidor de sellado en el AltoStar® Plate Sealer (sellador de placas) y pulse el botón Operate (operar).

9. El cajón se cierra automáticamente, sella durante 2 segundos y se vuelve a abrir automáticamente.

10. Saque la PCR Plate (placa PCR) sellada y el adaptador de placas del AltoStar® Plate Sealer (sellador de placas) y cierre el AltoStar® Plate Sealer (sellador de placas) pulsando el botón Close (cerrar).

10.17 Estabilidad de la mezcla de PCR

Tras completarse la serie de configuración de PCR, la mezcla de PCR de la PCR Plate (placa PCR) sellada es estable a temperatura ambiente (máx. 30 °C) durante máx. 30 minutos.

PRECAUCIÓN

No supere el tiempo de almacenamiento de la mezcla de PCR. Esto podría perjudicar el rendimiento del producto.
10.18 Inicio de una serie PCR

La serie PCR se realiza en un CFX96™ DW Dx bajo el control del CFX Manager™ Dx software.

1. Encienda el CFX96™ DW Dx, el ordenador conectado y el monitor.
2. Inicie el CFX Manager™ Dx software.
3. En la barra de menú del CFX Manager™ Dx software, seleccione File → Open → LIMS File... (archivo → abrir → archivo LIMS…) para abrir el cuadro de diálogo Open LIMS File (abrir archivo LIMS) (consulte la Figura 25).

Figura 25: Ventana del CFX Manager™ Dx software
4. En el cuadro de diálogo **Open LIMS File** (abrir archivo LIMS) que se abre, asegúrese de que el cursor está parpadeando en el campo **File name** (nombre de archivo) en la parte inferior (consulte la Figura 26). Si no es así, haga clic en el campo **File name** (nombre de archivo).

![Figura 26: Cuadro de diálogo Open LIMS File (abrir archivo LIMS)](image)

5. Escanee el código de barras de la PCR Plate (placa PCR) con el escáner de código de barras de mano para seleccionar y abrir automáticamente el archivo LIMS correcto. Se muestra el cuadro de diálogo **Run Setup** (configuración de serie) (consulte la Figura 27).

NOTA

Todos los parámetros necesarios para el inicio de la serie PCR se transfieren automáticamente desde el AltoStar® Connect software al CFX96™ DW Dx mediante el archivo de ciclador.
6. Haga clic en Open Lid (abrir tapa) para abrir la tapa del CFX96™ DW Dx (consulte la Figura 27).

![Figura 27: Cuadro de diálogo Run Setup (configuración de la serie)](image)

7. Centrífugue brevemente la PCR Plate (placa PCR) sellada para asegurarse de que todo el líquido se quede en el fondo de los pocillos.

8. Inserte la PCR Plate (placa PCR) sellada en el bloque calentador del CFX96™ DW Dx con el pocillo A1 a la izquierda.

9. Cierre el CFX96™ DW Dx haciendo clic en el botón Close Lid (cerrar tapa) en el cuadro de diálogo Run Setup (configuración de la serie) (consulte la Figura 27).

10. Inicie la serie PCR haciendo clic en el botón Start Run (iniciar serie) en el cuadro de diálogo Run Setup (configuración de la serie) (consulte la Figura 27).
10.19 Durante la serie PCR

No se requiere interacción del usuario hasta que finaliza la serie PCR. Se abre el cuadro de diálogo Run Details (detalles de la serie) (consulte la Figura 28) que muestra el estado de la serie PCR y una estimación del tiempo restante.

Figura 28: Cuadro de diálogo Run Details (detalles de la serie)

NOTA

Abrir la tapa del CFX96™ DW Dx durante una serie PCR operando el botón de la parte frontal de la tapa o haciendo clic en **Open Lid** (abrir tapa) en el cuadro de diálogo Run Details (detalles de la serie) cancelará la serie y se invalidarán todos los resultados.
Al final de la serie PCR, se muestra la ventana **Data Analysis** (análisis de datos) (consulte la Figura 29).

![Figura 29: Ventana Data Analysis (análisis de datos)](image)

10.20 Asignación de ensayos a grupos de pocillos

El AltoStar® Workflow (flujo de trabajo) procesa uno o varios ensayos PCR simultáneamente en una PCR Plate (placa PCR). Sin embargo, el usuario debe analizar cada ensayo por separado conforme a las instrucciones de uso del ensayo respectivo.
Con este fin, el usuario debe asignar todos los ensayos de una PCR Plate (placa PCR) a **Well Groups** (grupos de pocillos) individuales en el CFX Manager™ Dx software.

1. En la ventana **Data Analysis** (análisis de datos) (consulte la Figura 29), haga clic en el botón **Plate Setup** (configuración de la placa) en la barra de herramientas y seleccione **View/Edit Plate** (ver/editar placa). Se muestra el cuadro de diálogo **Plate Editor** (editor de placa) (consulte la Figura 30).

![Figura 30: Cuadro de diálogo Plate Editor (editor de placa)](image)

2. En el cuadro de diálogo **Plate Editor** (editor de placa), haga clic en **Well Groups**… (grupos de pocillos...) en la barra de herramientas. Se muestra el cuadro de diálogo **Well Groups Manager** (gestor de grupos de pocillos) (consulte la Figura 31).
3. Haga clic en el botón **Add** (añadir).

4. Escriba el nombre del primer ensayo en el cuadro de texto.

5. Seleccione todos los pocillos en el área de la PCR Plate (placa PCR) que pertenezcan al primer ensayo (consulte la Figura 31). Los pocillos que pertenecen a un ensayo individual pueden identificarse en el cuadro de diálogo **Plate Editor** (editor de placa) mediante la entrada del campo **Biological Set** (conjunto biológico).

![Figura 31: Cuadro de diálogo Well Groups Manager (gestor de grupos de pocillos)](image)

6. Repita los pasos del 3 al 5 para todos los ensayos en la PCR Plate (placa PCR).

7. Confirme la asignación de grupos de pocillos haciendo clic en **OK** (aceptar). Se cierra el cuadro de diálogo **Well Groups Manager** (gestor de grupos de pocillos).

8. Cierre el cuadro de diálogo **Plate Editor** (editor de placa) haciendo clic en **OK** (aceptar).

![CFX Manager Dx](image)

Figura 32: Cuadro de diálogo de confirmación
10.21 Análisis de datos PCR

Los resultados de todos los ensayos [Well Groups (grupos de pocillos)] en la PCR Plate (placa PCR) deben analizarse en la secuencia que se indica en la Figura 33.

Figura 33: Proceso de análisis de datos PCR
En la ventana **Data Analysis** (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el **Well Group** (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable **Well Group** (grupo de pocillos) junto al botón **Well Group** (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas. No utilice el **Well Group** (grupo de pocillos) «All Wells» (todos los pocillos).

Antes de analizar los resultados, asegúrese de que el grupo de pocillos del kit AltoStar® Parvovirus B19 PCR Kit 1.5 contiene todos los pocillos del kit AltoStar® Parvovirus B19 PCR Kit 1.5 y ningún pocillo de otros ensayos.

Figura 34: Botón Well Group (grupo de pocillos) y menú desplegable Well Group (grupo de pocillos)

NOTA

Los análisis combinados de más de un ensayo pueden arrojar resultados incorrectos.

PRECAUCIÓN

Como con cualquier test diagnóstico, los resultados deben interpretarse teniendo en cuenta todos los hallazgos clínicos y de laboratorio.
10.21.1 Corrección de la línea de base

Es posible que sea necesario corregir los ajustes de línea de base utilizados por el CFX Manager™ Dx software para pocillos individuales del ensayo [Well Group (grupo de pocillos)] que se están analizando.

1. En la ventana Data Analysis (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable Well Group (grupo de pocillos) junto al botón Well Group (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas.

2. En la parte izquierda de la ventana Data Analysis (análisis de datos) marque únicamente la casilla de verificación FAM para el canal de detección del parvovirus B19 objetivo (consulte la Figura 29).

3. En la barra de menú de la ventana Data Analysis (análisis de datos), haga clic en Settings → Baseline Threshold… (ajustes → umbral de línea de base...) para abrir el cuadro de diálogo Baseline Threshold (umbral de línea de base) (consulte la Figura 35).

4. Haga clic una vez en el símbolo ◊ en el encabezado de columna Baseline End (final de línea de base) para ordenar la tabla por valores ascendentes de Baseline End (final de línea de base).

5. Seleccione todas las líneas que muestren un valor de Baseline End (final de línea de base) de 1 a 9 (consulte la Figura 35).
6. Establezca el valor en el campo **End**: (final:) en 45 para las líneas seleccionadas (consulte la Figura 35).

7. Confirme los ajustes haciendo clic en **OK** (aceptar).

8. En la parte izquierda de la ventana **Data Analysis** (análisis de datos) quite la marca de la casilla de verificación **FAM** y marque únicamente la casilla **VIC** para el canal de detección de Internal Control (control interno) objetivo.

9. Repita los pasos del 3 al 7 para el canal de detección **VIC™ [Internal Control (control interno)]**.
10.21.2 Exclusión de señales de PCR irregulares

Los resultados válidos solo pueden derivarse de señales de PCR que estén libres de artefactos de señales, que pueden ser provocados, por ejemplo, por impurezas o burbujas en la mezcla de PCR. El usuario debe excluir las señales de PCR que contengan artefactos de señales.

1. En la ventana Data Analysis (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable Well Group (grupo de pocillos) junto al botón Well Group (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas.

2. Identifique pocillos con señales de PCR irregulares (aumento de señal lineal, picos de señal, etc.) en cualquiera de los canales de detección FAM™ (parvovirus B19 objetivo) y VIC™ [Internal Control (control interno)] (consulte la Figura 36).
Figura 36: Ventana Data Analysis (análisis de datos): señal de PCR irregular
3. Haga clic en cada pocillo afectado con el botón derecho del ratón y seleccione **Well... → Exclude from Analysis** (pocillo... → excluir del análisis) (consulte la Figura 37).

Figura 37: Ventana Data Analysis (análisis de datos): exclusión de un pocillo del análisis
4. El pocillo seleccionado se excluye del análisis. No se generarán resultados para este pocillo (consulte la Figura 38).

Figura 38: Ventana Data Analysis (análisis de datos): pocillo excluido
10.21.3 Ajuste de umbrales

Los umbrales para los canales de detección FAM™ (parvovirus B19 objetivo) y VIC™ [Internal Control (control interno)] debe ajustarlos manualmente el usuario conforme a las señales de los controles.

1. En la ventana Data Analysis (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable Well Group (grupo de pocillos) junto al botón Well Group (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas.

2. En la parte izquierda de la ventana Data Analysis (análisis de datos) marque únicamente la casilla de verificación VIC para el canal de detección del Internal Control (control interno) (consulte la Figura 39).
3. Seleccione únicamente el pociol de NTC en la vista de placa de la ventana Data Analysis (análisis de datos) (consulte la Figura 39).

4. Arrastre el umbral hasta el área exponencial de la señal de NTC (consulte la Figura 39).
El NTC contiene la plantilla de Internal Control (control interno), que produce una señal de control interno en un pocillo de NTC válido.

5. En la parte izquierda de la ventana **Data Analysis** (análisis de datos) quite la marca de la casilla de verificación **VIC** y marque la casilla **FAM** para el canal de detección del parvovirus B19 objetivo (consulte la Figura 40).

Figura 40: Ventana Data Analysis (análisis de datos): ajuste del umbral para FAM™
6. Seleccione únicamente los pocillos que contienen el NTC y los estándares de cuantificación o el control positivo en la vista de placa de la ventana **Data Analysis** (análisis de datos) (consulte la Figura 40).

7. Arrastre el pocillo de umbral por encima de la señal del NTC hacia el área exponencial de las señales de estándares de cuantificación o de control positivo.

10.21.4 Exclusión de pocillos que contengan datos no válidos

El usuario debe excluir los pocillos que no contienen datos válidos de la generación de resultados.

1. En la ventana **Data Analysis** (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el **Well Group** (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable **Well Group** (grupo de pocillos) junto al botón **Well Group** (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas.

2. Identifique todos los pocillos que contengan datos no válidos. Un pocillo no es válido si existe cualquiera de las condiciones siguientes:

 a) La serie completa no es válida [consulte el capítulo 10.21.4.1 Validez de una serie PCR de diagnóstico (cualitativa) y el capítulo 10.21.4.2 Validez de una serie PCR de diagnóstico (cuantitativa)].

 b) Los datos de pocillos no cumplen las condiciones de control para un resultado válido (consulte el capítulo 10.21.4.3 Validez de los resultados para una muestra).

3. Haga clic en cada pocillo que contenga datos no válidos conforme a los capítulos que van desde el 10.21.4.1 Validez de una serie PCR de diagnóstico (cualitativa) hasta el 10.21.4.3 Validez de los resultados para una muestra con el botón derecho del ratón y seleccione **Well... → Exclude from Analysis** (pocillo... → excluir del análisis) (consulte la Figura 41 y la Figura 42).
Figura 41: Ventana Data Analysis (análisis de datos): pociño no válido
Figura 42: Ventana Data Analysis (análisis de datos): exclusión de un pociño no válido del análisis
El pocillo seleccionado se excluye del análisis. No se generarán resultados para este pocillo (consulte la Figura 43).

Figura 43: Ventana Data Analysis (análisis de datos): pocillo excluido
10.21.4.1 Validez de una serie PCR de diagnóstico (cualitativa)

Una serie PCR de diagnóstico cualitativa es **válida** si se cumplen las siguientes condiciones de control:

<table>
<thead>
<tr>
<th>Control</th>
<th>Canal de detección</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™ (parvovirus B19 objetivo)</td>
<td>VIC™ [Internal Control (control interno)]</td>
</tr>
<tr>
<td>Estándar de cuantificación (estándar/positivo)</td>
<td>+</td>
</tr>
<tr>
<td>NTC</td>
<td>-</td>
</tr>
</tbody>
</table>

Una serie PCR de diagnóstico cualitativa **no es válida** si:

- no se ha completado la serie;
- no se cumple alguna de las condiciones de control para una serie PCR de diagnóstico cualitativa válida.

En caso de serie PCR de diagnóstico no válida, excluya todos los pocillos del análisis y repita la AltoStar® Run (serie) empezando por las muestras originales.

10.21.4.2 Validez de una serie PCR de diagnóstico (cuantitativa)

Una serie PCR de diagnóstico cuantitativa es **válida** si se cumplen las siguientes condiciones:

- Se cumplen todas las condiciones de control para una serie PCR de diagnóstico cualitativa válida [consulte el capítulo 10.21.4.1 Validez de una serie PCR de diagnóstico (cualitativa)].
- La curva estándar generada alcanza el siguiente valor de parámetro de control:
Tabla 9: Parámetro de control de curva estándar

<table>
<thead>
<tr>
<th>Parámetro de control</th>
<th>Valor válido</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^2)</td>
<td>≥ 0,98</td>
</tr>
</tbody>
</table>

El parámetro de control de la curva estándar se muestra bajo el gráfico Standard Curve (curva estándar) en la ventana Data Analysis (análisis de datos) (consulte la Figura 44).

![Curva estándar](image)

Figura 44: Datos de curva estándar

Una serie PCR de diagnóstico cuantitativa **no es válida** si:

- no se ha completado la serie;
- no se cumple alguna de las condiciones de control para una serie PCR de diagnóstico cuantitativa válida.

En caso de serie PCR de diagnóstico no válida, excluya todos los pocillos del análisis y repita la AltoStar® Run (serie) empezando por las muestras originales.
10.21.4.3 Validez de los resultados para una muestra

El resultado de una muestra individual no es válido si las señales tanto del canal de detección VIC™ [Internal Control (control interno)] como del FAM™ (parvovirus B19 objetivo) son negativas (consulte la Tabla 10). En caso de resultado no válido para una muestra, excluya el pocillo del análisis y repita los tests desde la muestra original o recoja y pruebe una nueva muestra.

Tabla 10: Validez del resultado

<table>
<thead>
<tr>
<th>Canal de detección</th>
<th>Validez del resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™ (parvovirus B19 objetivo)</td>
<td>VIC™ [Internal Control (control interno)]</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* La detección del Internal Control (control interno) no es necesaria cuando se detecta el parvovirus B19 objetivo. Una elevada carga de ADN de parvovirus B19 en la muestra puede generar una señal reducida o ausente del Internal Control (control interno).

10.21.5 Exportación de resultados de PCR para la interpretación de resultados automatizada

Para que los resultados de la serie PCR estén disponibles para que un LIMS (por sus siglas en inglés) conectado interprete los resultados de forma automatizada, deben exportarse en forma de archivo de resultados de LIMS (.csv).

1. En la ventana Data Analysis (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable Well Group (grupo de pocillos) junto al botón Well Group (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas.
2. Asegúrese de que se hayan completado todos los pasos del proceso de análisis (consulte los capítulos que van del 10.21.1 Corrección de la línea de base hasta el 10.21.4 Exclusión de pocillos que contengan datos no válidos) para el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5.

3. En la barra de menú de la ventana Data Analysis (análisis de datos), haga clic en Export → Export All Data Sheets (exportar → exportar todas las hojas de datos) para abrir el cuadro de diálogo Browse for Folder (buscar carpeta) (consulte la Figura 45).

4. En el cuadro de diálogo Browse for Folder (buscar carpeta), especifique la ubicación para los archivos de resultados de LIMS que se van a generar y haga clic en OK (aceptar).

NOTA

La integración de LIMS debe implementarse de conformidad con las especificaciones de altona Diagnostics. Para más información acerca de la integración de LIMS, póngase en contacto con el soporte técnico de altona Diagnostics (consulte el capítulo 14 Asistencia técnica).
NOTA

Si se guardan los resultados de más de un ensayo [Well Group (grupo de pocillos)] de una serie PCR en la misma carpeta, se sustituyen los archivos de resultados de LIMS del primer ensayo [Well Group (grupo de pocillos)] por los archivos de resultados de LIMS del segundo ensayo [Well Group (grupo de pocillos)]. En este caso, los archivos de resultados de LIMS del primer ensayo [Well Group (grupo de pocillos)] pueden volver a exportarse.

10.21.6 Exportación de resultados de PCR para la interpretación de resultados manual

Si los resultados no se transfieren a un LIMS para la interpretación de resultados automatizada, la interpretación de resultados debe realizarla manualmente el usuario. Con ese fin, los resultados de análisis de cada ensayo [Well Group (grupo de pocillos)] deben exportarse en forma de Report (informe).

1. En la ventana Data Analysis (análisis de datos) (consulte la Figura 29), asegúrese de seleccionar el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5. Por tanto, haga clic en el menú desplegable Well Group (grupo de pocillos) junto al botón Well Group (grupo de pocillos) (consulte la Figura 34) de la barra de herramientas.

2. En la parte izquierda de la ventana Data Analysis (análisis de datos), marque la casilla de verificación VIC y la casilla FAM.

3. Asegúrese de que se hayan completado todos los pasos del proceso de análisis (consulte los capítulos que van del 10.21.1 Corrección de la línea de base hasta el 10.21.4 Exclusión de pocillos que contengan datos no válidos) para el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5.
4. En la barra de menú de la ventana Data Analysis (análisis de datos), haga clic en Tools → Reports... (herramientas → informes...) para abrir el cuadro de diálogo Report (informe) (consulte la Figura 46).

![Figura 46: Cuadro de diálogo Report (informe): exportación de los resultados como informe](image-url)
5. Asegúrese de que se seleccione al menos el siguiente contenido para la generación de informes en la parte superior izquierda del cuadro de diálogo Report (informe) (consulte la Figura 47):

- **Header**
 - Report Information

- **Experiment Setup**
 - Run Information
 - Protocol

- **Quantification**
 - Analysis Settings
 - Amplification Chart
 - Standard Curve Chart
 - Data

Figura 47: Cuadro de diálogo Report (informe)

Seleccione o anule la selección del contenido adicional del Report (informe) marcando las casillas de verificación respectivas como proceda.

6. En la barra de menú del cuadro de diálogo Report (informe), haga clic en File → Save As... (archivo → guardar como...) para abrir el cuadro de diálogo Save Report (guardar informe).

7. En el cuadro de diálogo Save Report (guardar informe), especifique el nombre y la ubicación para el archivo de informe que se va a generar y haga clic en Save (guardar).

10.21.6.1 Interpretación manual de los resultados

1. Abra el archivo del Report (informe) generado para el Well Group (grupo de pocillos) del kit AltoStar® Parvovirus B19 PCR Kit 1.5 (consulte el capítulo 10.21.6 Exportación de resultados de PCR para la interpretación de resultados manual).

2. Consulte la tabla Quantification Data (datos de cuantificación) en el Report (informe) (consulte la Figura 48). La tabla se compone de dos filas para cada Sample (muestra) - una para el parovirus B19 Target (objetivo) y una para el Internal Control (control interno) Target (objetivo).
Los resultados cualitativos se marcan con el término **qualitative** (cualitativo) en la columna **Well Note** (nota del pocillo) de la tabla **Quantification Data** (datos de cuantificación).

3. En ese caso, identifique cada fila con el **parvovirus B19 Target** (objetivo) y el término **qualitative** (cualitativo) en la columna **Well Note** (nota del pocillo).

4. En estas filas, consulte la columna **Cq** para el resultado de la **Sample** (muestra) respectiva.

5. Consulte la Tabla 11 para ver la interpretación de los resultados cualitativos.

Los resultados cuantitativos se marcan con un **Concentration factor** (factor de concentración) en la columna **Well Note** (nota del pocillo) de la tabla **Quantification Data** (datos de cuantificación) (consulte la Figura 48).

6. Identifique cada fila con el **parvovirus B19 Target** (objetivo) y un **Concentration factor** (factor de concentración) en la columna **Well Note** (nota del pocillo).
7. En estas filas, consulte la columna **Starting Quantity (SQ)** (cantidad inicial) para la concentración del parvovirus B19 objetivo medido en el eluido de la Sample (muestra) respectiva. Para calcular el resultado de la muestra del paciente original, el usuario debe multiplicar el valor de **Starting Quantity (SQ)** (cantidad inicial) por el **Concentration factor** (factor de concentración) respectivo (incluida la unidad).

8. Consulte la Tabla 12 para ver la interpretación de los resultados cuantitativos.

Tabla 11: Resultados cualitativos: Interpretación del resultado

<table>
<thead>
<tr>
<th>Ciclo de umbral (C_q) del parvovirus B19 objetivo</th>
<th>Interpretación del resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 45</td>
<td>Se ha detectado ADN específico de parvovirus B19.</td>
</tr>
<tr>
<td>N/A</td>
<td>No se ha detectado ADN específico de parvovirus B19. La muestra no contiene cantidades detectables de ADN específico de parvovirus B19.</td>
</tr>
</tbody>
</table>

Tabla 12: Resultados cuantitativos: Interpretación del resultado

<table>
<thead>
<tr>
<th>Cantidad inicial (SQ) del parvovirus B19 objetivo</th>
<th>Interpretación del resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>Se ha detectado ADN específico de parvovirus B19. Multiplique el valor de la Starting Quantity (SQ) (cantidad inicial) por el Concentration factor (factor de concentración) en la columna Well Note (nota del pocillo) (incluida la unidad) para calcular la concentración de la muestra del paciente original.</td>
</tr>
<tr>
<td>N/A</td>
<td>No se ha detectado ADN específico de parvovirus B19. La muestra no contiene cantidades detectables de ADN específico de parvovirus B19.</td>
</tr>
</tbody>
</table>
11. Eliminación

Elimine los desechos peligrosos y biológicos conforme a las regulaciones locales y nacionales. No debe permitirse que los componentes sobrantes de producto ni los desechos lleguen al alcantarillado, a cursos de agua o al suelo exterior.

PRECAUCIÓN

Trate siempre las muestras como si fueran infecciosas y (bio)peligrosas conforme a los procedimientos seguros de laboratorio. Si se derrama material de las muestras, utilice rápidamente un desinfectante adecuado. Manipule los materiales contaminados como si fueran biopeligrosos.

PRECAUCIÓN

Elimine los desechos peligrosos y biológicos solo conforme a las regulaciones locales y nacionales para evitar la contaminación ambiental.

NOTA

Los desechos líquidos y cualquier líquido que incluya Lysis Buffer (tampón de lisis) o Wash Buffer 1 (tampón de lavado) contienen tiocianato de guanidinio, que puede formar compuestos tóxicos, muy reactivos y volátiles cuando se combinan con lejía o ácidos fuertes.

NOTA

La PCR Plate (placa PCR) debe eliminarse sellada, ya que no se puede retirar la AltoStar® PCR Plate Sealing Foil (lámina sellante para placa PCR).
12. Evaluación de rendimiento

La evaluación de rendimiento del kit AltoStar® Parvovirus B19 PCR Kit 1.5 se realizó utilizando el 3er estándar internacional de la OMS para parvovirus B19 para técnicas de amplificación de ácido nucleico (código NIBSC: 12/208) y material estándar de parvovirus B19 calibrado con el estándar internacional de la OMS.

12.1 Plasma

12.1.1 Sensibilidad analítica

Para la determinación del límite de detección (LoD), se generó una serie de dilución del 3er estándar internacional de la OMS para parvovirus B19 para técnicas de amplificación de ácido nucleico (código NIBSC: 12/208) en plasma de 1000 a 1 UI/ml.

Cada dilución se analizó en 8 replicados en 3 días diferentes (total n = 24 por dilución) usando combinaciones de 3 lotes del kit AltoStar® Parvovirus B19 PCR Kit 1.5, 3 lotes del kit AltoStar® Purification Kit 1.5 y 3 lotes del AltoStar® Internal Control 1.5 (control interno). Las series se realizaron usando 3 AltoStar® Automation System AM16 (sistema de automatización) diferentes y CFX96™ DW Dx.

Se combinaron los datos de todas las series y se realizó un análisis de probit para determinar el valor del 95 % del límite de detección.
Tabla 13: Resultados de PCR utilizados para calcular la sensibilidad analítica del kit AltoStar® Parvovirus B19 PCR Kit 1.5

<table>
<thead>
<tr>
<th>Concentración [UI/ml]</th>
<th>N [total]</th>
<th>N [positivo]</th>
<th>Índice de éxito [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>23</td>
<td>95,8</td>
</tr>
<tr>
<td>50</td>
<td>24</td>
<td>19</td>
<td>79,2</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>7</td>
<td>29,2</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>7</td>
<td>29,2</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>2</td>
<td>8,3</td>
</tr>
</tbody>
</table>

El límite de detección del kit AltoStar® Parvovirus B19 PCR Kit 1.5 para la detección de parvovirus B19 en plasma es de 121 UI/ml (intervalo de confianza del 95 %: 79 - 218 UI/ml).

12.1.2 Especificidad analítica

La especificidad analítica del kit AltoStar® Parvovirus B19 PCR Kit 1.5 se garantiza mediante la selección exhaustiva de los oligonucleótidos (cebadores y sondas). Los oligonucleótidos se comprobaron mediante un análisis de comparación con secuencias disponibles públicamente para asegurar que se detectarán todos los genotipos relevantes de parvovirus B19.

Para la verificación de la especificidad analítica del kit AltoStar® Parvovirus B19 PCR Kit 1.5, se realizaron los siguientes experimentos (consulte los capítulos desde el 12.1.2.1 Muestras negativas hasta el 12.1.2.3 Reactividad cruzada):
12.1.2.1 Muestras negativas

Se analizaron 69 muestras de plasma negativas en parvovirus B19 de donantes individuales con el kit AltoStar® Parvovirus B19 PCR Kit 1.5. 66 de 69 muestras dieron negativo para ADN específico de parvovirus B19, mientras que todas muestras dieron negativo para el Internal Control (control interno). La especificidad analítica del kit AltoStar® Parvovirus B19 PCR Kit 1.5 para muestras de plasma es de ≥ 95 %.

12.1.2.2 Sustancias interferentes

Para evaluar la influencia de las sustancias endógenas y exógenas potencialmente interferentes en el rendimiento del kit AltoStar® Parvovirus B19 PCR Kit 1.5, las muestras de plasma se enriquecieron con sustancias seleccionadas que contenían parvovirus B19 en una concentración de 3 x LoD (363 UI/ml), de 10 000 UI/ml y sin parvovirus B19, respectivamente.

Los resultados obtenidos para las muestras que contenían sustancias potencialmente interferentes se compararon con los resultados generados para muestras de plasma que no se enriquecieron con interferentes. Cada muestra se procesó en 3 replicados. No se observaron interferencias para muestras que contenían niveles elevados de sustancias endógenas (bilirrubina, hemoglobina, triglicéridos, albúmina sérica humana y ADN genómico humano) o exógenas (diclofenaco, ibuprofeno, azatioprina y ciclosporina).

PRECAUCIÓN

La presencia de inhibidores de PCR (como p. ej., heparina) puede provocar falsos negativos o resultados no válidos.
12.1.2.3 Reactividad cruzada

La especificidad analítica del kit AltoStar® Parvovirus B19 PCR Kit 1.5 con respecto a la reactividad cruzada con otros patógenos distintos al parvovirus B19 se evaluó probando virus relacionados con el parvovirus B19, virus que provocan síntomas parecidos a una infección por parvovirus B19 y virus con probabilidad de estar presentes en pacientes que sufran una infección por parvovirus B19.

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 no mostró ninguna reacción cruzada con ninguno de los siguientes patógenos:

- Virus del herpes simple -1 (HSV-1)
- Virus del herpes simple -2 (HSV-2)
- Virus varicela-zóster (VZV)
- Herpesvirus 6A humano (HHV-6A)
- Herpesvirus 6B humano (HHV-6B)
- Adenovirus (ADV) subtipo 14
- Citomegalovirus (CMV)
- Vírus BK (BKV)
- Vírus JC (JCV)
- Vírus de la hepatitis A (HAV)
- Vírus de la hepatitis B (HBV)
- Vírus de la hepatitis C (HCV)
- Vírus 1 de la inmunodeficiencia humana (HIV-1)

PRECAUCIÓN

Si la muestra contiene otros patógenos distintos de parvovirus B19, puede darse competencia con la amplificación objetivo o reactividades cruzadas.

12.1.3 Rango lineal

Para la determinación del rango lineal del kit AltoStar® Parvovirus B19 PCR Kit 1.5, se probó una serie de dilución de parvovirus B19 en plasma de entre 200 y 100 000 000 UI/ml. Se probaron diluciones con una concentración entre 100 000 000 y 1 000 000 UI/ml en 4 replicados, así como diluciones con una concentración entre 100 000 y 200 UI/ml en 8 replicados. El análisis se realizó basándose en una regresión polinómica.
El rango lineal del kit AltoStar® Parvovirus B19 PCR Kit 1.5 para la cuantificación de parvovirus B19 en plasma es de entre 500 y 100 000 000 UI/ml. Se muestra una representación gráfica de los datos en la Figura 49.

Concentración estimada LOG10 frente a concentración nominal LOG10 del kit AltoStar® Parvovirus B19 PCR Kit 1.5

![Graph showing the estimated concentration (log10 UI/ml) vs. nominal concentration (log10 UI/ml) of the AltoStar® Parvovirus B19 PCR Kit 1.5.](image)

\[y = 0.994x + 0.0025 \]

\[R^2 = 0.9873 \]

Figura 49: Análisis de regresión lineal del kit AltoStar® Parvovirus B19 PCR Kit 1.5 con muestras de plasma

12.1.4 Precisión

La precisión del kit AltoStar® Parvovirus B19 PCR Kit 1.5 se evaluó utilizando un panel compuesto por una muestra de plasma con un alto positivo en parvovirus B19 (10 000 UI/ml), una con un bajo positivo en parvovirus B19 [2500 UI/ml (5 veces el límite inferior de cuantificación (LLOQ))] y una de plasma negativo en parvovirus B19. Se realizaron 5 series con diferentes combinaciones de 3 lotes del kit AltoStar® Parvovirus B19 PCR Kit 1.5, 3 lotes del kit AltoStar® Purification Kit 1.5 y 3 lotes del AltoStar® Internal Control 1.5 (control interno). Las series se realizaron en 5 días diferentes usando 3 AltoStar® Automation System AM16 (sistema de automatización) diferentes y 3 CFX96™ DW Dx. Cada miembro del panel se probó en al menos 4 replicados por serie.
La repetibilidad (variabilidad intraserie), la variabilidad interlote y la reproducibilidad (variabilidad total) se determinaron basándose en valores de cuantificación para las muestras con alto y bajo positivo en parvovirus B19 (consulte la Tabla 14) y en valores de ciclo de umbral (C_q) para el Internal Control (control interno) en las muestras negativas en parvovirus B19 (consulte la Tabla 15).

Tabla 14: Datos de precisión (datos de cuantificación CV % log10) para muestras de plasma con alto y bajo positivo en parvovirus B19

<table>
<thead>
<tr>
<th></th>
<th>Muestra con alto positivo en parvovirus B19 (10 000 UI/ml)</th>
<th>Muestra con bajo positivo en parvovirus B19 (2500 UI/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidad intraserie</td>
<td>0,36 - 1,59</td>
<td>0,98 - 3,66</td>
</tr>
<tr>
<td>Variabilidad interlote</td>
<td>2,20</td>
<td>4,46</td>
</tr>
<tr>
<td>Variabilidad total</td>
<td>2,35</td>
<td>3,59</td>
</tr>
</tbody>
</table>

Tabla 15: Datos de precisión (valores CV % C_q) para el Internal Control (control interno) en muestras de plasma negativas en parvovirus B19

<table>
<thead>
<tr>
<th></th>
<th>Internal Control (control interno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidad intraserie</td>
<td>0,14 - 0,46</td>
</tr>
<tr>
<td>Variabilidad interlote</td>
<td>0,44</td>
</tr>
<tr>
<td>Variabilidad total</td>
<td>0,38</td>
</tr>
</tbody>
</table>

12.1.5 Índice de fallo total

Se evaluó la robustez del kit AltoStar® Parvovirus B19 PCR Kit 1.5 probando 30 muestras de plasma negativas en parvovirus B19 de donantes individuales enriquecidas con parvovirus B19 hasta una concentración final de 3 x LoD (363 UI/ml). Todas las muestras (30 de 30) analizadas dieron positivo en el canal de detección de fluorescencia específico de parvovirus B19 (FAM™).
12.1.6 Arrastre
La contaminación por arrastre es un riesgo que depende del flujo de trabajo y no del ensayo PCR que se utilice. Para el AltoStar® Workflow (flujo de trabajo) se evaluó la posible contaminación cruzada por arrastre de muestras con alto positivo analizando muestras alternativas con alto positivo de parvovirus B19 (1,00E+07 UI/ml) y muestras negativas (n = 44 cada una por serie, 2 series) con el kit AltoStar® Parvovirus B19 PCR Kit 1.5. No se observó arrastre (es decir, todas las muestras negativas en parvovirus B19 dieron negativo).

12.1.7 Evaluación del diagnóstico
El kit AltoStar® Parvovirus B19 PCR Kit 1.5 se evaluó en un estudio comparativo con el kit RealStar® Parvovirus B19 PCR Kit 1.0 con marcado CE. De forma retrospectiva, se analizaron 126 muestras de plasma de supervisión rutinaria de parvovirus B19 en paralelo utilizando el kit RealStar® Parvovirus B19 PCR Kit 1.0 en combinación con los módulos VERSANT® kPCR Molecular System SP/AD (Siemens) y utilizando el kit AltoStar® Parvovirus B19 PCR Kit 1.5 junto con el kit AltoStar® Purification Kit 1.5 y el AltoStar® Internal Control 1.5 (control interno) en el AltoStar® Automation System AM16 (sistema de automatización) y el CFX96™ DW Dx. Para el análisis cualitativo, se han excluido todas las muestras con un resultado no válido para uno o ambos ensayos, así como todas las muestras con un resultado cuantitativo por debajo del límite de detección de uno o ambos ensayos. Los resultados para las 109 muestras restantes figuran en la Tabla 16.
Tabla 16: Resultados de la evaluación de la sensibilidad y la especificidad del diagnóstico para muestras de plasma

<table>
<thead>
<tr>
<th></th>
<th>RealStar® Parvovirus B19 PCR Kit 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>AltoStar® Parvovirus B19 PCR Kit 1.5</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

La sensibilidad y la especificidad diagnósticas del kit AltoStar® Parvovirus B19 PCR Kit 1.5 en comparación con el kit RealStar® Parvovirus B19 PCR Kit 1.0 fueron del 100 %, respectivamente.

Para la correlación cuantitativa, se han excluido las muestras que dieron negativo en uno o ambos ensayos con un resultado cuantitativo por debajo del límite inferior de cuantificación de uno o ambos ensayos. Se utilizaron las 89 muestras restantes para la correlación cuantitativa mediante análisis de regresión lineal (consulte la Figura 50).
Hubo muy buena correlación entre los resultados cuantitativos obtenidos con el kit AltoStar® Parvovirus B19 PCR Kit 1.5 y el kit RealStar® Parvovirus B19 PCR Kit 1.0 [coeficiente de correlación $R = 0.96$ ($R^2 = 0.93$)].
13. **Control de calidad**

De acuerdo con el sistema de control de calidad con certificación ISO 13485 de altona Diagnostics GmbH, cada lote del kit AltoStar® Parvovirus B19 PCR Kit 1.5 se somete a tests con especificaciones predeterminadas para asegurar la calidad consistente del producto.

14. **Asistencia técnica**

Si necesita asistencia, póngase en contacto con el soporte técnico de altona Diagnostics:

- **correo electrónico:** support@altona-diagnostics.com
- **teléfono:** +49-(0)40-5480676-0

15. **Bibliografía**

16. Marcas comerciales y aviso legal

AltoStar®, RealStar® (altona Diagnostics); CFX96™, CFX Manager™, Hard-Shell® (Bio-Rad); VERSANT® (Siemens); FAM™, VIC™ (Thermo Fisher Scientific).

Los nombres registrados, las marcas comerciales, etc. usados en este documento, incluso si no están marcados específicamente como tales, no se deben considerar privados de protección legal.

El kit AltoStar® Parvovirus B19 PCR Kit 1.5 es un kit de diagnóstico con marcado CE de conformidad con la directiva 98/79/CE de diagnóstico in vitro.

Producto sin licencia de Health Canada y no aprobado ni autorizado por la FDA.

No disponible en todos los países.

© 2020 altona Diagnostics GmbH; reservados todos los derechos.
17. Explicación de los símbolos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Dispositivo médico de diagnóstico in vitro</td>
</tr>
<tr>
<td>GTIN</td>
<td>Número mundial de artículo comercial</td>
</tr>
<tr>
<td>LOT</td>
<td>Código de lote</td>
</tr>
<tr>
<td>CONT</td>
<td>Contenido</td>
</tr>
<tr>
<td>CAP</td>
<td>Color del tapón</td>
</tr>
<tr>
<td>REF</td>
<td>Número de catálogo</td>
</tr>
<tr>
<td>NUM</td>
<td>Número</td>
</tr>
<tr>
<td>COMP</td>
<td>Componente</td>
</tr>
<tr>
<td>📚</td>
<td>Consultar instrucciones de uso</td>
</tr>
<tr>
<td>🔫</td>
<td>Contiene suficiente para «n» pruebas/reacciones (rxns)</td>
</tr>
<tr>
<td>℃</td>
<td>Límite de temperatura</td>
</tr>
<tr>
<td>🕒</td>
<td>Fecha de vencimiento</td>
</tr>
<tr>
<td>🧠</td>
<td>Fabricante</td>
</tr>
<tr>
<td>♿️</td>
<td>Precaución</td>
</tr>
<tr>
<td>MAT</td>
<td>Número de material</td>
</tr>
<tr>
<td>📖</td>
<td>Versión</td>
</tr>
<tr>
<td>📖</td>
<td>Nota</td>
</tr>
</tbody>
</table>
página en blanco a propósito
página en blanco a propósito
always a drop ahead.