Instruções de Utilização

AltoStar®
CMV PCR Kit 1.5

09/2020 PT
AltoStar®

CMV PCR Kit 1.5

Para utilização com

CFX96™ Deep Well Dx System (Bio-Rad)
Conteúdo

1. **Sobre estas Instruções de Utilização** ... 9
2. **Utilização prevista** .. 10
3. **Conteúdo do kit** ... 10
4. **Armazenamento e manuseamento** ... 11
 4.1 **Armazenamento** ... 11
 4.2 **Manuseamento** .. 12
 4.2.1 **Master A e Master B** ... 13
 4.2.2 **QS e NTC** .. 13
5. **Informação de base** ... 13
6. **Descrição do produto** .. 14
 6.1 **Master A e Master B** ... 15
 6.2 **Padrões de Quantificação (QS)** ... 15
 6.3 **Controlo Sem Modelo (NTC)** .. 16
 6.4 **AltoStar® Workflow (ordem das tarefas)** ... 16
7. **Amostras** ... 17
 7.1 **Tipos de amostras** .. 17
 7.2 **Recolha e manuseamento de amostras** .. 17
 7.3 **Volume de Amostra** .. 18
 7.4 **Tubos de amostra** ... 18
 7.5 **Códigos de barras da amostra** .. 18
8. **Materiais e dispositivos necessários, mas não fornecidos** 19
9. **Avisos, precauções e limitações** .. 21
10. **Procedimento** .. 23
 10.1 **Perspetiva Geral da AltoStar® Workflow (ordem das tarefas)** 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2 Iniciar o AltoStar® AM16</td>
<td>28</td>
</tr>
<tr>
<td>10.3 Efetuar a manutenção</td>
<td>29</td>
</tr>
<tr>
<td>10.4 Programação de um AltoStar® Run (processamento)</td>
<td>32</td>
</tr>
<tr>
<td>10.4.1 Programação manual</td>
<td>32</td>
</tr>
<tr>
<td>10.4.2 Importar a partir do LIMS</td>
<td>39</td>
</tr>
<tr>
<td>10.5 Criar um AltoStar® Run (processamento)</td>
<td>40</td>
</tr>
<tr>
<td>10.6 Iniciar um Processamento de Purificação</td>
<td>42</td>
</tr>
<tr>
<td>10.6.1 Preparação de amostras</td>
<td>43</td>
</tr>
<tr>
<td>10.6.1.1 Plasma</td>
<td>44</td>
</tr>
<tr>
<td>10.6.1.2 Sangue Total</td>
<td>44</td>
</tr>
<tr>
<td>10.6.1.3 Urina</td>
<td>45</td>
</tr>
<tr>
<td>10.6.2 Preparação de reagentes para um Processamento de Purificação</td>
<td>45</td>
</tr>
<tr>
<td>10.6.3 Carregamento de instrumento para um Processamento de Purificação</td>
<td>46</td>
</tr>
<tr>
<td>10.7 Durante o Processamento de Purificação</td>
<td>58</td>
</tr>
<tr>
<td>10.8 Conclusão do Processamento de Purificação</td>
<td>60</td>
</tr>
<tr>
<td>10.9 Resultados de Processamento de Purificação</td>
<td>63</td>
</tr>
<tr>
<td>10.10 Estabilidade do eluato</td>
<td>65</td>
</tr>
<tr>
<td>10.10.1 Armazenamento</td>
<td>65</td>
</tr>
<tr>
<td>10.10.2 Selagem da Eluate Plate (placa de eluato)</td>
<td>65</td>
</tr>
<tr>
<td>10.10.3 Remover a selagem da Eluate Plate (placa de eluato)</td>
<td>67</td>
</tr>
<tr>
<td>10.11 Iniciar um Processamento de Configuração PCR</td>
<td>68</td>
</tr>
<tr>
<td>10.12 Preparação de reagentes para um Processamento de</td>
<td>70</td>
</tr>
<tr>
<td>Configuração PCR</td>
<td></td>
</tr>
<tr>
<td>10.12.1 Carregar o AltoStar® AM16 para um Processamento de</td>
<td>71</td>
</tr>
<tr>
<td>Configuração PCR</td>
<td></td>
</tr>
<tr>
<td>10.13 Durante o Processamento de Configuração PCR</td>
<td>80</td>
</tr>
<tr>
<td>10.14 Conclusão do Processamento de Configuração PCR</td>
<td>81</td>
</tr>
<tr>
<td>10.15 Resultados do Processamento de Configuração PCR</td>
<td>83</td>
</tr>
</tbody>
</table>
10.16 Selagem da PCR Plate (placa PCR) ... 85
10.17 Estabilidade da Mistura PCR ... 87
10.18 Iniciar um Processamento PCR .. 87
10.19 Durante o Processamento PCR ... 90
10.20 Atribuição de ensaios a Well Groups (Grupos de Poços) 91
10.21 Análise de dados PCR ... 95
10.21.1 Correção da linha de base ... 97
10.21.2 Exclusão de sinais irregulares PCR .. 99
10.21.3 Definição de limiares ... 103
10.21.4 Exclusão de poços com dados inválidos ... 106
10.21.4.1 Validade de um Processamento PCR de Diagnóstico (qualitativo) ... 110
10.21.4.2 Validade de um Processamento PCR de Diagnóstico (quantitativo) .. 110
10.21.4.3 Validade dos resultados para uma amostra 112
10.21.5 Exportação de resultados PCR para a interpretação automatizada de resultados ... 112
10.21.6 Exportação de resultados PCR para a interpretação manual de resultados .. 114
10.21.6.1 Interpretação manual dos resultados .. 116
11. Eliminação .. 119
12. Avaliação do desempenho .. 120
12.1 Plasma .. 120
12.1.1 Sensibilidade analítica ... 120
12.1.2 Especificidade analítica ... 121
12.1.2.1 Amostras negativas ... 122
12.1.2.2 Substâncias interferentes ... 122
12.1.2.3 Reatividade cruzada .. 122
12.1.3 Intervalo linear .. 123
12.1.4 Precisão... 124
12.1.5 Taxa de insucesso total .. 125
12.1.6 Transferência ... 126
12.1.7 Avaliação de diagnóstico ... 126
12.2 Sangue Total .. 128
12.2.1 Sensibilidade analítica ... 128
12.2.2 Especificidade analítica ... 129
12.2.2.1 Amostras negativas .. 130
12.2.2.2 Substâncias interferentes ... 130
12.2.2.3 Reatividade cruzada ... 130
12.2.3 Intervalo linear ... 131
12.2.4 Precisão .. 132
12.2.5 Taxa de insucesso total .. 133
12.2.6 Transferência ... 133
12.2.7 Avaliação de diagnóstico ... 134
12.3 Urina .. 136
12.3.1 Sensibilidade analítica ... 136
12.3.2 Especificidade analítica .. 137
12.3.2.1 Amostras negativas .. 137
12.3.2.2 Substâncias interferentes ... 137
12.3.2.3 Reatividade cruzada ... 138
12.3.3 Intervalo linear ... 138
12.3.4 Precisão .. 139
12.3.5 Taxa de insucesso total .. 140
12.3.6 Transferência ... 141
12.3.7 Avaliação de diagnóstico ... 141

13. Controlo de qualidade .. 144

14. Apoio técnico ... 144
15. Bibliografia ... 144
16. Marcas comerciais e isenções de responsabilidade.............................. 145
17. Explicação de símbolos .. 146
1. Sobre estas Instruções de Utilização

Estas instruções de utilização orientam o utilizador na utilização do kit AltoStar® CMV PCR Kit 1.5 no AltoStar® Automation System AM16 (sistema de automação) (Hamilton; doravante sintetizado como AltoStar® AM16) com o AltoStar® Connect software (Versão 1.6.16 ou superiores, Hamilton) para configuração PCR automatizada e no CFX96™ Deep Well Dx System* (sistema de deteção) (Bio-Rad, doravante sintetizado como CFX96™ DW Dx) com o CFX Manager™ Dx software (Versão 3.1, Bio-Rad) para PCR em tempo real. Os principais passos de funcionamento da “AltoStar® Workflow” (ordem das tarefas) [para mais detalhes, consulte o capítulo 6.4 AltoStar® Workflow (ordem das tarefas)] são descritos para se tornarem mais compreensíveis, mas sem pretensão de integralidade.

Para informações mais detalhadas sobre estes produtos, consulte os respetivos manuais ou as instruções de utilização:

- Manual IVD do Operador AltoStar® AM16 (Hamilton)
- Manual IVD do Operador AltoStar® Connect software (Hamilton)
- Instruções de Utilização AltoStar® Purification Kit 1.5
- Instruções de Utilização AltoStar® Internal Control 1.5
- Manual de Funcionamento dos Sistemas CFX96™ Dx e CFX96™ Deep Well Dx (Bio-Rad)

Ao longo deste manual, os termos ATENÇÃO e NOTA têm os seguintes significados:

ATENÇÃO

![Alerta]

Destaca os procedimentos ou as instruções de funcionamento que, se não forem seguidos corretamente, podem resultar em lesões pessoais ou afetar o desempenho do produto. Contacte o Apoio Técnico da altona Diagnostics para obter assistência.

NOTA

![Informação]

Consiste em informações úteis para o utilizador mas que não são essenciais para a tarefa em questão.

Leia as instruções de utilização cuidadosamente antes de utilizar o produto.

* “CFX96™ Deep Well Dx System” é a nova marca da versão IVD do CFX96™ Deep Well Real-Time PCR Detection System (sistema de deteção) (Bio-Rad).
2. Utilização prevista

O kit AltoStar® CMV PCR Kit 1.5 consiste num teste de diagnóstico *in vitro*, baseado em tecnologia PCR em tempo real, para deteção e quantificação de ADN específico de citomegalovírus humano (CMV) em plasma humano, sangue total e urina.

O kit AltoStar® CMV PCR Kit 1.5 está configurado para ser utilizado com o CFX96™ Deep Well Dx System (sistema de deteção) (Bio-Rad) em combinação com o AltoStar® Automation System AM16 (sistema de automação), o kit AltoStar® Purification Kit 1.5 e o AltoStar® Internal Control 1.5 (controlo interno). Os resultados obtidos com o kit AltoStar® CMV PCR Kit 1.5 têm de ser interpretados juntamente com outros dados clínicos e laboratoriais.

O kit AltoStar® CMV PCR Kit 1.5 destina-se a ser utilizado por profissionais com formação em técnicas de biologia molecular.

3. Conteúdo do kit

O kit AltoStar® CMV PCR Kit 1.5 contém os seguintes componentes:

* Tabela 1: Componentes do kit

<table>
<thead>
<tr>
<th>Cor da tampa</th>
<th>Componente AltoStar® CMV 1.5</th>
<th>Número de tubos</th>
<th>Volume nominal [µl/tubo]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td>Master A</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Roxo</td>
<td>Master B</td>
<td>8</td>
<td>180</td>
</tr>
<tr>
<td>Vermelho</td>
<td>QS1*</td>
<td>2</td>
<td>250</td>
</tr>
<tr>
<td>Vermelho</td>
<td>QS2*</td>
<td>2</td>
<td>250</td>
</tr>
<tr>
<td>Vermelho</td>
<td>QS3*</td>
<td>2</td>
<td>250</td>
</tr>
<tr>
<td>Vermelho</td>
<td>QS4*</td>
<td>2</td>
<td>250</td>
</tr>
<tr>
<td>Branco</td>
<td>NTC**</td>
<td>2</td>
<td>250</td>
</tr>
</tbody>
</table>

* Quantification Standard (Padrão de Quantificação)
** No Template Control (Controlo Sem Modelo)
ATENÇÃO

Antes da primeira utilização, verifique o produto e os seus componentes relativamente a integralidade quanto ao número, tipo e conteúdos. Não utilize um produto defeituoso ou incompleto, o desempenho pode ficar comprometido.

O kit AltoStar® CMV PCR Kit 1.5 contém reagentes suficientes para realizar 96 reações num número máximo de 8 processamentos.

O produto é enviado em gelo seco. No momento da entrega e antes da primeira utilização, verifique o produto e os respectivos componentes relativamente a:

- Integridade
- Integralidade quanto ao número, tipo e conteúdos
- Etiquetagem correta
- Data de validade
- Estado congelado
- Limpidez e ausência de partículas

Se um ou mais componentes do produto não estiverem congelados no momento da receção, se os tubos tiverem ficado comprometidos durante o envio ou estiverem em falta, contacte o Apoio Técnico da altona Diagnostics para obter assistência (consulte o capítulo 14 Apoio técnico).

4. Armazenamento e manuseamento

Todos os reagentes incluídos no kit AltoStar® CMV PCR Kit 1.5 são soluções prontas a usar.

4.1 Armazenamento

Todos os componentes do kit AltoStar® CMV PCR Kit 1.5 têm de ser armazenados entre -25 °C e -15 °C no momento da chegada.
ATENÇÃO

Condições de armazenamento incorretas poderão comprometer o desempenho do produto.

ATENÇÃO

Não utilize componentes de produtos para além da data de validade indicada na etiqueta do componente.

4.2 Manuseamento

ATENÇÃO

Não ultrapasse a sequência descongelar-congelar e a duração de manuseamento conforme especificado nestas instruções de utilização.

ATENÇÃO

O manuseamento incorreto dos componentes do produto e das amostras poderá provocar contaminação, causando resultados incorretos dos exames IVD.

- Não troque as tampas de frascos ou garrafas, para evitar o risco de contaminação cruzada.

- Para minimizar o risco de contaminação por transferência, armazene o material positivo e/ou potencialmente positivo separado dos componentes do kit.

- Utilize áreas de trabalho separadas para a preparação da amostra/ preparação da reação e as atividades de amplificação/deteção.

- Use sempre luvas descartáveis.

- Não abra as placas PCR pós-amplificação, para evitar contaminação com amplicões.
4.2.1 Master A e Master B

Após a descongelação, o Master A e o Master B mantêm-se estáveis durante 5 horas a uma temperatura até +30 °C.

Nota

Se o Master A e o Master B forem descongelados mas não utilizados, podem ser novamente congelados e descongelados para processamentos posteriores. No caso de abertura, elimine as tampas e utilize tampas novas para evitar a contaminação dos reagentes.

4.2.2 QS e NTC

1. Após a descongelação, o QS e o NTC (Controlo Sem Modelo) mantêm-se estáveis durante 5 horas a uma temperatura até +30 °C.

2. Elimine as tampas dos tubos de QS e NTC a cada utilização e utilize tampas novas para evitar a contaminação dos reagentes.

3. Após a utilização, feche os tubos de QS e NTC com tampas novas e congele-os imediatamente.

4. Não ultrapasse a seguinte sequência descongelar-congelar para cada tubo de QS e NTC: Descongelar 1 → Congelar 1 → Descongelar 2 → Congelar 2 → Descongelar 3 → Congelar 3 → Descongelar 4

5. Informação de base

O citomegalovírus humano (CMV, herpesvírus humano 5) é um membro da família Herpesviridae e pertence à subfamília Betaherpesvirinae. Consiste num capsídeo icosáédrico que tem um genoma com ADN de cadeia dupla linear de aproximadamente 230 kbp, um tegumento envolvente e um invólucro exterior.
O CMV está presente a nível mundial e infeta humanos de todas as idades, sem padrões de transmissão sazonais ou epidémicos. A seroprevalência do CMV aumenta com a idade em todas as populações e varia entre 40 e 100%. Tal como nas infeções com outros herpesvírus, a primeira infecção com o CMV resulta no estabelecimento de uma infecção persistente e latente. A reativação do vírus pode ocorrer em resposta a diferentes estímulos, particularmente na imunossupressão. A vasta maioria das infecções por CMV é assintomática ou subclínica, mas as infecções congênitas e as infecções em pacientes imunocomprometidos poderão ser sintomáticas e graves. Em hospedeiros imunocomprometidos, como recetores de transplantes, pessoas infetadas pelo VIH ou doentes de cancro, a infecção por CMV ou reativação da infecção poderá tornar-se numa doença disseminada que os coloca em risco de vida.

6. Descrição do produto

O kit AltoStar® CMV PCR Kit 1.5 consiste num teste de diagnóstico in vitro para a detecção e quantificação de ADN específico do CMV em plasma humano, sangue total e urina na AltoStar® Workflow (ordem das tarefas) [para mais detalhes, consulte o capítulo 6.4 AltoStar® Workflow (ordem das tarefas)]. Baseia-se em tecnologia PCR em tempo real, utilizando a reação em cadeia da polimerase (PCR) para a amplificação de sequências-alvo específicas de CMV e das sondas específicas para o alvo com marcação fluorescente para a detecção do ADN amplificado.

Para além do sistema de detecção e amplificação específica do ADN do CMV, o ensaio inclui oligonucleótidos para a amplificação e detecção do IC [AltoStar® Internal Control 1.5 (controlo interno)]. O IC é automaticamente adicionado no início do procedimento de purificação de ácido nucleico no AltoStar® AM16. Para mais detalhes, consulte as instruções de utilização do AltoStar® Internal Control 1.5 (controlo interno).

As sondas específicas para o ADN do CMV estão marcadas com o fluoróforo FAM™. A sonda específica para o IC está marcada com um fluoróforo detetável no canal VIC™.
A utilização de sondas associada a colorações distinguíveis permite a deteção paralela do ADN específico do CMV e do Internal Control (controlo interno) nos canais de deteção correspondentes do CFX96™ DW Dx.

6.1 Master A e Master B
O Master A e o Master B contêm todos os componentes (tampão PCR, polimerase do ADN, sais de magnésio, primers e sondas) necessários para permitir a amplificação mediada por PCR e a deteção alvo do ADN específico do CMV e do IC [AltoStar® Internal Control 1.5 (controlo interno)] numa preparação de reação.

6.2 Padrões de Quantificação (QS)
Os Padrões de Quantificação (QS) contêm concentrações padrão do ADN específico do CMV (consulte a Tabela 2). Foram calibrados segundo a 1.ª Norma Internacional da OMS para o citomegalovírus humano (CMV) para as Técnicas Baseadas na Amplificação de Ácidos Nucleicos (NIBSC, código: 09/162). Os Padrões de Quantificação são utilizados para verificar a funcionalidade do sistema de deteção e amplificação específica do ADN do CMV, assim como para gerar uma curva padrão, permitindo a quantificação do ADN específico do CMV numa amostra.

Tabela 2: Padrões de Quantificação

<table>
<thead>
<tr>
<th>Padrão de Quantificação</th>
<th>Concentração [UI/µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS1</td>
<td>1,00E+04</td>
</tr>
<tr>
<td>QS2</td>
<td>1,00E+03</td>
</tr>
<tr>
<td>QS3</td>
<td>1,00E+02</td>
</tr>
<tr>
<td>QS4</td>
<td>1,00E+01</td>
</tr>
</tbody>
</table>
6.3 Controlo Sem Modelo (NTC)
O Controlo Sem Modelo (NTC) não contém ADN específico do CMV, mas contém o modelo de Internal Control (controlo interno). O NTC é utilizado como controlo negativo para a PCR em tempo real específica do ADN do CMV e indica a possível contaminação do Master A e do Master B.

6.4 AltoStar® Workflow (ordem das tarefas)
O kit AltoStar® CMV PCR Kit 1.5 destina-se a ser utilizado dentro da AltoStar® Workflow (ordem das tarefas). A AltoStar® Workflow (ordem das tarefas) inclui os seguintes passos:

1. Programar um AltoStar® Run (processamento).
2. Processamento de Purificação no AltoStar® AM16 utilizando o kit AltoStar® Purification Kit 1.5 e o AltoStar® Internal Control 1.5 (controlo interno).
3. Processamento de Configuração PCR no AltoStar® AM16 utilizando o kit AltoStar® CMV PCR Kit 1.5.
4. Processamento PCR em tempo real num CFX96™ DW Dx.

Todos os tipos de amostras e volumes de amostras especificados para utilizar com o kit AltoStar® Purification Kit 1.5 podem ser processados em simultâneo no AltoStar® AM16. Cada amostra pode ser analisada com tantos ensaios em paralelo quanto o eluato disponível permita.

NOTA
Os ensaios com perfis de temperatura PCR diferentes são ordenados automaticamente para separar placas PCR.
7. Amostras

7.1 Tipos de amostras
Os seguintes tipos de amostras podem ser utilizados com o kit AltoStar® CMV PCR Kit 1.5:

- Plasma EDTA humano
- Plasma com citrato humano
- Sangue total EDTA humano
- Sangue total com citrato humano
- Urina humana

ATENÇÃO
Não utilize outros tipos de amostras! A utilização de outros tipos de amostras poderá comprometer o desempenho do produto.

7.2 Recolha e manuseamento de amostras
O sangue tem de ser recolhido com sistemas de recolha de sangue padrão disponíveis no mercado (por ex., Sarstedt, Becton Dickinson, Greiner ou equivalente). Os conteúdos dos tubos devem ser misturados diretamente após a recolha de amostras. As amostras de sangue devem ser enviadas refrigeradas (2 °C - 8 °C). O transporte deve ser realizado de acordo com as instruções locais e nacionais relativas ao transporte de materiais biológicos.

Para geração de plasma EDTA, o sangue total deve ser centrifugado de acordo com as instruções fornecidas pelo fabricante do sistema de recolha no prazo de 24 horas após a recolha. O plasma EDTA deve ser armazenado entre 2 °C - 8 °C por um período não superior a 14 dias (Abdul-Ali et al. 2011).

As amostras de urina têm de ser recolhidas num recipiente estéril. As amostras de urina devem ser armazenadas entre +2 °C e +8 °C por um período não superior a 24 horas.
ATENÇÃO

As amostras devem ser sempre tratadas como sendo infecciosas e com risco (biológico), em conformidade com os procedimentos laboratoriais de segurança. No caso de derrames de material da amostra, utilize imediatamente um desinfetante apropriado. Manuseie os materiais contaminados como se se tratasse de materiais com risco biológico.

NOTA

O armazenamento congelado de amostras não compromete o desempenho do kit. Ao trabalhar com amostras congeladas, certifique-se de que as amostras estão totalmente descongeladas e devidamente misturadas antes da utilização.

7.3 Volume de Amostra

O kit AltoStar® CMV PCR Kit 1.5 pode ser utilizado para purificações de ácido nucleico a partir de um volume de amostra de 500 μl. É necessário providenciar um volume de amostra adicional para ter em consideração o volume morto do tubo de amostra utilizado (consulte o capítulo 7.4 Tubos de amostra).

7.4 Tubos de amostra

Os tubos de amostra adequados para utilização com o AltoStar® AM16 podem ser adquiridos na altona Diagnostics (tubo de 7 ml com tampa, 82 x 13 mm, VK000010). Podem ser testados outros tubos de amostra para efeitos de aplicabilidade pelo utilizador. Para mais detalhes, consulte as instruções de utilização do kit AltoStar® Purification Kit 1.5.

7.5 Códigos de barras da amostra

Para identificação de uma amostra automatizada pelo AltoStar® AM16, todos os tubos de amostra têm de ser etiquetados com um código de barras adequado. Para mais detalhes, consulte as instruções de utilização do kit AltoStar® Purification Kit 1.5.
8. **Materiais e dispositivos necessários, mas não fornecidos**

O material e os dispositivos apresentados na Tabela 3 têm de ser encomendados à altona Diagnostics GmbH.

Tabela 3: Materiais e dispositivos necessários

<table>
<thead>
<tr>
<th>Nome do material</th>
<th>Descrição</th>
<th>N.º de encomenda</th>
<th>Unidade de expedição</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltoStar® AM16</td>
<td>AltoStar® Automation System AM16 (sistema de automação)</td>
<td>806160</td>
<td>1</td>
</tr>
<tr>
<td>AltoStar® Connect software</td>
<td>AltoStar® Connect software (Versão 1.6.16 ou superiores)</td>
<td>911275</td>
<td>1</td>
</tr>
<tr>
<td>CFX96™ DW Dx</td>
<td>CFX96™ Deep Well Dx System* (Bio-Rad) com CFX Manager™ Dx software (Versão 3.1)</td>
<td>DT16</td>
<td>1</td>
</tr>
<tr>
<td>AltoStar® Purification Kit 1.5</td>
<td>Kit AltoStar® Purification Kit 1.5</td>
<td>PK15-16</td>
<td>1</td>
</tr>
<tr>
<td>AltoStar® Internal Control 1.5</td>
<td>AltoStar® Internal Control 1.5 (controlo interno)</td>
<td>IC15-16</td>
<td>1</td>
</tr>
<tr>
<td>PCR Plate</td>
<td>Placa PCR Semi-Skirted Hard-Shell® com 96 poços, Baixo perfil, Corpo transparente, Poço branco - com código de barras</td>
<td>VK000005</td>
<td>25</td>
</tr>
<tr>
<td>AltoStar® PCR Plate Sealing Foil</td>
<td>AltoStar® PCR Plate Sealing Foil (película de selagem da placa PCR) com canto de corte A1 e lados de 10 mm (SP-0235)</td>
<td>VK000006</td>
<td>100</td>
</tr>
<tr>
<td>1000 μl CO-RE Tips</td>
<td>Pontas CO-RE, 8 x 480 Pontas de Volume Elevado (1000 μl) com Filtros</td>
<td>VK000007</td>
<td>3840</td>
</tr>
<tr>
<td>300 μl CO-RE Tips</td>
<td>Pontas CO-RE, 12 x 480 Pontas de Volume Padrão (300 μl) com Filtros</td>
<td>VK000008</td>
<td>5760</td>
</tr>
<tr>
<td>Pooling Tube</td>
<td>(Tubo de conjugação) Tubo 5 ml, 92 x 15,3 mm (redondo), PP, com código de barras</td>
<td>VK000002</td>
<td>1000</td>
</tr>
<tr>
<td>Nome do material</td>
<td>Descrição</td>
<td>N.º de encomenda</td>
<td>Unidade de expedição</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Waste Bag</td>
<td>(Saco de Resíduos) Sterilbag, Tipo de Saco 60 - Autoclave 134 °C</td>
<td>VK000009</td>
<td>500</td>
</tr>
<tr>
<td>Screw Cap - red (cap for QS1 - QS4)</td>
<td>Tampa de rosca para microtubos, vermelha</td>
<td>VK000012</td>
<td>5000</td>
</tr>
<tr>
<td>Screw Cap - blue (cap for Master A)</td>
<td>Tampa de rosca para microtubos, azul</td>
<td>VK000013</td>
<td>5000</td>
</tr>
<tr>
<td>Screw Cap - purple (cap for Master B)</td>
<td>Tampa de rosca para microtubos, roxa</td>
<td>VK000015</td>
<td>5000</td>
</tr>
<tr>
<td>Screw Cap - white (cap for NTC)</td>
<td>Tampa de rosca para microtubos, branca</td>
<td>VK000016</td>
<td>5000</td>
</tr>
</tbody>
</table>

* "CFX96™ Deep Well Dx System" é a nova marca da versão IVD do CFX96™ Deep Well Real-Time PCR Detection System (sistema de deteção) (Bio-Rad).

NOTA

Não utilize outros materiais ou dispositivos que não estejam especificados nestas instruções de utilização.

Tabela 4: Materiais e dispositivos de laboratório adicionais

<table>
<thead>
<tr>
<th>Material</th>
<th>Descrição</th>
<th>N.º de encomenda</th>
<th>Unidade de expedição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Sealer</td>
<td>por ex., AltoStar® Plate Sealer (selador de placa)</td>
<td>VK000023</td>
<td>1</td>
</tr>
</tbody>
</table>

Materiais e dispositivos gerais:

- Agitador vortex
- Luvas sem pó (descartáveis)
- Centrifugadora para centrifugação dos reagentes do kit PCR
- Centrifugadora para centrifugação de placas PCR
9. Avisos, precauções e limitações

• Antes da primeira utilização, verifique o produto e os seus componentes relativamente a integralidade quanto ao número, tipo e conteúdos. Não utilize um produto defeituoso ou incompleto, o desempenho pode ficar comprometido.

• Não utilize outros tipos de amostras! A utilização de outros tipos de amostras poderá comprometer o desempenho do produto.

• A presença de inibidores de PCR (por ex., heparina) poderá causar resultados inválidos ou falsos negativos.

• No caso de a amostra conter outros agentes patogénicos que não o CMV, poderá haver concorrência com a amplificação alvo ou reatividades cruzadas.

• Condições de armazenamento incorretas poderão comprometer o desempenho do produto.

• A falta de centrifugação dos componentes do produto após a descongelação poderia provocar a contaminação dos componentes com resíduos de reagentes nas tampas e, como consequência, comprometer o desempenho do produto.

• Não ultrapasse a sequência descongelar-congelar e a duração de manuseamento conforme especificado nestas instruções de utilização.

• Não reutilize tampas de tubos para evitar a contaminação dos reagentes.

• Não utilize componentes de produtos para além da data de validade indicada na etiqueta do componente.

• O manuseamento incorreto dos componentes do produto e das amostras poderá provocar contaminação, causando resultados incorretos dos exames IVD.

 ◦ Não troque as tampas de frascos ou garrafas, para evitar o risco de contaminação cruzada.

 ◦ Para minimizar o risco de contaminação por transferência, armazene o material positivo e/ou potencialmente positivo separado dos componentes do kit.

 ◦ Utilize áreas de trabalho separadas para a preparação da amostra/preparação da reação e as atividades de amplificação/deteção.

 ◦ Use sempre luvas descartáveis.

 ◦ Não abra as placas PCR pós-amplificação, para evitar contaminação com amplicões.
• O armazenamento de eluatos nas condições erradas poderá provocar a degradação da sequência-alvo do CMV.
• Não ultrapasse o tempo de armazenamento da Mistura PCR. Tal pode comprometer o desempenho do produto.
• As amostras devem ser sempre tratadas como sendo infecciosas e com risco (biológico), em conformidade com os procedimentos laboratoriais de segurança. No caso de derrames de material da amostra, utilize imediatamente um desinfetante apropriado. Manuseie os materiais contaminados como se se tratasse de materiais com risco biológico.
• Elimine os resíduos perigosos e biológicos unicamente em conformidade com os regulamentos nacionais e locais para evitar a contaminação ambiental.
• À semelhança de qualquer outro teste de diagnóstico, os resultados devem ser interpretados tendo em consideração todos os dados clínicos e laboratoriais.
• A existência potencial de mutações nas regiões alvo do genoma do CMV abrangidas pelos primers e/ou sondas utilizados no kit poderá resultar na incapacidade de detecção da presença do agente patogénico.
10. Procedimento

10.1 Perspetiva Geral da AltoStar® Workflow (ordem das tarefas)

Os passos da AltoStar® Workflow (ordem das tarefas) estão resumidos na Tabela 5.

Tabela 5: Perspetiva Geral da AltoStar® Workflow (ordem das tarefas)

<table>
<thead>
<tr>
<th>Passo</th>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Iniciar o AltoStar® AM16</td>
<td>• Ligue o AltoStar® AM16.</td>
</tr>
<tr>
<td></td>
<td>• Ligue o computador e o monitor.</td>
</tr>
<tr>
<td></td>
<td>• Inicie o AltoStar® Connect software.</td>
</tr>
<tr>
<td>2. Efetuar a manutenção</td>
<td>Na barra de menus, clique em Application → Instrument Maintenance (Aplicação → Manutenção de Instrumento).</td>
</tr>
<tr>
<td></td>
<td>• No caso de Manutenção Semanal, clique em Start Weekly Maintenance (Iniciar Manutenção Semanal).</td>
</tr>
<tr>
<td></td>
<td>• No caso de Manutenção Diária, clique em Start Daily Maintenance (Iniciar Manutenção Diária).</td>
</tr>
<tr>
<td></td>
<td>Siga as instruções no ecrã relativas ao processo de manutenção.</td>
</tr>
<tr>
<td>3. Programar um AltoStar® Run (processamento)</td>
<td>Na barra de menus, clique em Program Run → Program Run (AltoStar® Purification) [Processamento de Programa → Processamento de Programa (Purificação AltoStar®)].</td>
</tr>
<tr>
<td></td>
<td>Em alternativa, regresse ao Ecrã Inicial e clique no botão Program Run (Processamento de Programa).</td>
</tr>
<tr>
<td></td>
<td>• Introduza as amostras ou importe-as a partir do LIMS,</td>
</tr>
<tr>
<td></td>
<td>• Selecione os ensaios para as amostras, exceto se já tiverem sido importados do LIMS,</td>
</tr>
<tr>
<td></td>
<td>• Clique no botão Create Run (Criar Processamento) na barra de ferramentas para criar o AltoStar® Run (processamento).</td>
</tr>
<tr>
<td>Passo</td>
<td>Ação</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>4. Iniciar um Processamento de Purificação</td>
<td>Na barra de menus clique em Purification → Start Purification (Purificação → Iniciar Purificação). Em alternativa, regresse ao Ecrã Inicial e clique no botão Start Purification (Iniciar Purificação).</td>
</tr>
<tr>
<td></td>
<td>• Selecione o Purification Run (Processamento de Purificação) a ser iniciado para apresentar as amostras incluídas no Purification Run (Processamento de Purificação) selecionado.</td>
</tr>
<tr>
<td></td>
<td>• Prepare os reagentes de purificação:</td>
</tr>
<tr>
<td></td>
<td>◦ Certifique-se de que os reagentes de purificação a utilizar têm o mesmo Número de Carga [exceto para o AltoStar® Internal Control 1.5 (controlo interno)] e não estão fora da validade.</td>
</tr>
<tr>
<td></td>
<td>◦ Se existirem precipitados visíveis no Lysis Buffer (tampão de lise), aqueça-o (≤ 50 °C) até dissolverem totalmente.</td>
</tr>
<tr>
<td></td>
<td>◦ Descongele o IC [AltoStar® Internal Control 1.5 (controlo interno)] e agite em vortex durante 5 segundos.</td>
</tr>
<tr>
<td></td>
<td>◦ Agite em vortex as Magnetic Beads (esferas magnéticas) durante 5 segundos sem molhar a tampa.</td>
</tr>
<tr>
<td></td>
<td>• Prepare as amostras para o Purification Run (Processamento de Purificação) a iniciar, tal como descrito no capítulo 10.6.1 Preparação de amostras.</td>
</tr>
<tr>
<td></td>
<td>• Clique no botão Start Run (Iniciar Processamento) na barra de ferramentas.</td>
</tr>
<tr>
<td></td>
<td>• Siga a caixa de diálogo de carga e carregue o instrumento em conformidade.</td>
</tr>
<tr>
<td></td>
<td>• Confirme a mensagem Loading complete (Carga Concluída) com Ok ou aguarde 10 segundos.</td>
</tr>
</tbody>
</table>

O sistema realizará automaticamente o Purification Run (Processamento de Purificação).
<table>
<thead>
<tr>
<th>Passo</th>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Concluir o Processamento de Purificação</td>
<td>• Certifique-se de que o Tabuleiro de Carga está vazio e confirme a caixa de diálogo Run finished (Processamento Concluído) com Ok.</td>
</tr>
<tr>
<td></td>
<td>• Siga as instruções na caixa de diálogo Maintenance (Manutenção) e confirme com Ok.</td>
</tr>
<tr>
<td></td>
<td>• Sele e armazene os componentes do kit AltoStar® Purification Kit 1.5 que podem ser reutilizados.</td>
</tr>
<tr>
<td></td>
<td>• Se o Processamento de Configuração PCR associado não for iniciado de imediato, sele a Eluate Plate (placa de eluato) com a AltoStar® Eluate Plate Sealing Foil (película de selagem da placa de eluato) e armazene entre 2 °C e 8 °C até 24 horas.</td>
</tr>
<tr>
<td></td>
<td>• Observe os resultados de Processamento de Purificação para confirmar o processamento bem-sucedido de cada amostra.</td>
</tr>
</tbody>
</table>
6. Iniciar um Processamento de Configuração PCR

<table>
<thead>
<tr>
<th>Passo</th>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na barra de menus, clique em PCR Setup → Start PCR Setup (Configuração PCR → Iniciar Configuração PCR). Em alternativa, regresse ao Ecrã Inicial e clique no botão Start PCR Setup (Iniciar Configuração PCR).</td>
<td></td>
</tr>
<tr>
<td>• Selecione o Processamento de Configuração PCR a iniciar para visualizar a Eluate Plate (placa de eluato) e os reagentes incluídos no Processamento de Configuração PCR selecionado.</td>
<td></td>
</tr>
<tr>
<td>• Prepare os reagentes PCR:</td>
<td></td>
</tr>
<tr>
<td>◦ Certifique-se de que os Reagentes Principais e os Controlos a usar pertencem ao mesmo lote de kit e estão dentro do prazo de validade.</td>
<td></td>
</tr>
<tr>
<td>◦ Descongele a quantidade necessária de tubos de Reagente Principal e Controlo, agite brevemente em vortex e centrifugue numa centrifugadora.</td>
<td></td>
</tr>
<tr>
<td>• Se a Eluate Plate (placa de eluato) estiver selada, centrifugue-a brevemente e remova a selagem com cuidado.</td>
<td></td>
</tr>
<tr>
<td>• Clique no botão Start Run (Iniciar Processamento) na barra de ferramentas.</td>
<td></td>
</tr>
<tr>
<td>• Siga a caixa de diálogo Loading (Carregamento) e carregue o instrumento em conformidade.</td>
<td></td>
</tr>
<tr>
<td>• Confirme a mensagem Loading complete (Carga Concluída) com Ok ou aguarde 10 segundos.</td>
<td></td>
</tr>
<tr>
<td>• O sistema realizará automaticamente o Processamento de Configuração PCR.</td>
<td></td>
</tr>
</tbody>
</table>

7. Concluir o Processamento de Configuração PCR

<table>
<thead>
<tr>
<th>Passo</th>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certifique-se de que o Tabuleiro de Carga está vazio e confirme a caixa de diálogo Run finished (Processamento Concluído) com Ok.</td>
<td></td>
</tr>
<tr>
<td>• Siga as instruções na caixa de diálogo Maintenance (Manutenção) e confirme com Ok.</td>
<td></td>
</tr>
<tr>
<td>• Feche e armazene os componentes do kit AltoStar® CMV PCR Kit 1.5 que podem ser reutilizados.</td>
<td></td>
</tr>
<tr>
<td>• Observe os resultados de Processamento de Configuração PCR para confirmar o processamento bem-sucedido de cada amostra.</td>
<td></td>
</tr>
</tbody>
</table>

8. Selar a PCR Plate (placa PCR)

<table>
<thead>
<tr>
<th>Passo</th>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sele a PCR Plate (placa PCR) com a AltoStar® PCR Plate Sealing Foil (pelicula de selagem da placa PCR).</td>
<td></td>
</tr>
</tbody>
</table>
Passo 9. Iniciar o Processamento PCR

<table>
<thead>
<tr>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ligue o CFX96™ DW Dx e o respetivo computador e monitor.</td>
</tr>
<tr>
<td>• Inicie o CFX Manager™ Dx software.</td>
</tr>
<tr>
<td>• Abra o CFX96™ DW Dx.</td>
</tr>
<tr>
<td>• Centrifugue a PCR Plate (placa PCR) e insira-a no CFX96™ DW Dx.</td>
</tr>
<tr>
<td>• Selecione File → Open → LIMS File... (Ficheiro → Abrir → Ficheiro LIMS...) a partir da barra de menus.</td>
</tr>
<tr>
<td>• Digitalize o código de barras da PCR Plate (placa PCR) com o scanner de código de barras.</td>
</tr>
<tr>
<td>• Feche o CFX96™ DW Dx.</td>
</tr>
<tr>
<td>• Clique no botão Start Run (Iniciar Processamento) para iniciar o Processamento PCR. Atribua um nome e guarde o ficheiro do processamento PCR.</td>
</tr>
<tr>
<td>• O CFX96™ DW Dx realizará automaticamente o Processamento PCR.</td>
</tr>
</tbody>
</table>

Passo 10. Separar ensaios para análise individual

<table>
<thead>
<tr>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Separe todos os ensaios no Processamento PCR em Well Groups (Grupos de Poços) distintos.</td>
</tr>
</tbody>
</table>

Passo 11. Analisar os dados e interpretar os resultados do Processamento PCR

<table>
<thead>
<tr>
<th>Ação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para cada Well Group (Grupo de Poços) individualmente:</td>
</tr>
<tr>
<td>• Efetue a correção da linha de base em todos os poços para todos os canais de deteção utilizados.</td>
</tr>
<tr>
<td>• Exclua os poços com sinais irregulares de PCR.</td>
</tr>
<tr>
<td>• Defina os limiares de todos os canais de deteção de acordo com os controlos.</td>
</tr>
<tr>
<td>• Exclua os poços que contêm dados inválidos.</td>
</tr>
<tr>
<td>• Crie o ficheiro de resultados do LIMS para a exportação de resultados para o LIMS.</td>
</tr>
<tr>
<td>• Crie o relatório de resultados para a interpretação manual de resultados.</td>
</tr>
</tbody>
</table>
10.2 Iniciar o AltoStar® AM16

1. Ligue o AltoStar® AM16 com o interruptor verde no lado frontal esquerdo e inicie o computador pressionando o botão de alimentação.

2. Aguarde até o Windows arrancar.

3. Inicie o AltoStar® Connect software utilizando o ícone a* no ambiente de trabalho do Windows, na barra de tarefas do Windows ou no menu iniciar do Windows.

O Ecrã Inicial do AltoStar® Connect software é apresentado (consulte a Figura 1) mostrando três botões que representam os passos da AltoStar® Workflow (ordem das tarefas) a realizar no AltoStar® AM16:

- **Program Run** (Processamento de Programa): Os dados de amostra são introduzidos e os ensaios são atribuídos às amostras. As amostras programadas são então atribuídas a um AltoStar® Run (processamento) [consulte o capítulo 10.5 Criar um AltoStar® Run (processamento)], que inclui um Processamento de Purificação e uma ou mais Configurações e Processamentos PCR. É possível programar previamente vários AltoStar® Runs (processamentos).

- **Start Purification** (Iniciar Purificação): Um programmed Purification Run (Processamento de Purificação programado) é selecionado e iniciado conforme descrito no capítulo 10.6 Iniciar um Processamento de Purificação.

- **Start PCR Setup** (Iniciar Configuração PCR): Um programmed PCR Setup Run (Processamento de Configuração PCR programado) é selecionado e iniciado conforme descrito no capítulo 10.11 Iniciar um Processamento de Configuração PCR.
10.3 Efetuar a manutenção

1. Aceda ao Ecrã de Manutenção clicando em **Application → Instrument Maintenance** (Aplicação → Manutenção de Instrumento) na barra de menus (consulte a Figura 1).

Um estado válido da Manutenção Diária e da Manutenção Semanal é representado por um visto verde na coluna **Status** (Estado) (consulte a Figura 2). Se for apresentado um círculo vermelho cruzado a meio, tem de ser efetuado o respetivo procedimento de manutenção.
Se for necessário efetuar a Manutenção Diária ou Semanal:

1. Clique no botão correspondente na barra de ferramentas.

As rotinas de manutenção verificam o funcionamento correto do instrumento e solicitarão todas as ações do utilizador necessárias, incluindo a limpeza do instrumento.

NOTA

Verification (Verificação) refere-se ao procedimento de manutenção semestral que é efetuado por Engenheiros de serviço no local com formação da Hamilton. A linha *Verification* (Verificação) também tem de apresentar um visto verde na coluna *Status* (Estado). Caso contrário, o instrumento não processará quaisquer amostras ou reagentes.
Figura 2: Ecrã de Manutenção com estado de manutenção válido

<table>
<thead>
<tr>
<th>Status</th>
<th>Last Run</th>
<th>Maintenance Result</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Maintenance</td>
<td>🔄 2018-02-06 08:06 🔄</td>
<td>🔄</td>
<td>2018-02-07 08:06</td>
</tr>
<tr>
<td>Weekly Maintenance</td>
<td>🔄 2018-02-03 06:57 🔄</td>
<td>🔄</td>
<td>2018-02-10 06:57</td>
</tr>
<tr>
<td>Verification</td>
<td>🔄 2017-09-29 23:59 🔄</td>
<td>🔄</td>
<td>2018-08-29 23:59</td>
</tr>
</tbody>
</table>
10.4 Programação de um AltoStar® Run (processamento)

A introdução de dados de amostra e atribuições de ensaios pode ser efetuada manualmente (consulte o capítulo 10.4.1 Programação manual) ou importando a partir de um Sistema de gestão de informação laboratorial (LIMS) ligado. Se a programação manual não for necessária, avance para o capítulo 10.4.2 Importar a partir do LIMS.

10.4.1 Programação manual

1. Clique em Program Run → Program Run (AltoStar® Purification) [Processamento de Programa → Processamento de Programa (Purificação AltoStar®)] na barra de menus. Em alternativa, regresse ao Ecrã Inicial do AltoStar® Connect software e selecione no botão Program Run (Processamento de Programa).

O Ecrã de Programação é apresentado (consulte a Figura 3) exibindo a tabela de amostras no fundo do ecrã com colunas para:

- Propriedades de amostras: Sample Name (Nome da Amostra) (opcional), Sample Barcode (Código de Barras da Amostra), Sample Type (Tipo de Amostra) e Predilution (Pré-diluição)
- Definições de amostra: Process Sample (Processar Amostra), Sample Priority (Prioridade de Amostras)
- Informação de amostra: Sample Volume (Volume de Amostra) necessário para o Processamento de Purificação (o volume morto não é tido em consideração), Eluate left (Eluato restante) (determinado por atribuição de ensaio)
- Atribuição de ensaio para as amostras: Programming (Programação)

NOTA

As definições de amostra Process Sample (Processar Amostra) e Sample Priority (Prioridade de Amostras) são seleccionadas manualmente, enquanto as informações de amostra Sample Volume (Volume de Amostra) e Eluate left (Eluato restante) são definidas automaticamente ao atribuir ensaios PCR às amostras.
Figura 3: Ecrã de Programação

2. Clique no botão **Add Samples** (Adicionar Amostras) para acrescentar amostras manualmente à tabela de amostras. É apresentada a caixa de diálogo **Add Samples** (Adicionar Amostras) (consulte a Figura 4).
Figura 4: Caixa de diálogo Add Samples (Adicionar Amostras)

3. Selecione o tipo de amostra solicitado no campo **Sample Type** (Tipo de Amostra).

NOTA

Se o tipo errado de amostra for selecionado no campo **Sample Type** (Tipo de Amostra), a amostra poderá não ser processada.

4. **Opcional**: Introduza um nome de amostra no campo **Sample Name** (Nome de Amostra).

5. Introduza um código de barras através do scanner de código de barras no campo **Sample Barcode** (Código de Barras da Amostra). É necessário inserir um código de barras exclusivo para cada tubo de amostra.

6. Verifique em cada amostra se o volume de amostra necessário de 500 μl, acrescido do volume morto do tubo de amostra, está disponível.
Ao calcular o volume de amostra necessário para as amostras de Sangue Total, tenha em consideração que o volume de amostra das amostras de Sangue Total já estará sempre duplicado pela adição do Whole Blood Pretreatment Buffer (tampão de pré-tratamento de sangue total) durante o procedimento de preparação de amostras especificado (consulte o capítulo 10.6.1.1 Sangue Total).

Um volume de amostra insuficiente (por ex., devido à falta do volume morto necessário do tubo de amostra) provocará a exclusão da amostra no Processamento de Purificação.

7. Assinale a caixa de verificação Predilution (Pré-diluição) se a amostra tiver de ser pré-diluída durante o procedimento de preparação de amostras (consulte o capítulo 10.6.1 Preparação de amostras) para providenciar o volume de amostra necessário.

- O campo Sample Volume (Volume de Amostra) e o campo Added Diluent (Diluente Adicionado) são apresentados (consulte a Figura 5), cada um com 1 000 μl como volumes predefinidos.

- Altere os volumes predefinidos de 1 000 μl no campo Sample Volume (Volume de Amostra) e no campo Added Diluent (Diluente Adicionado) para corresponder aos volumes que serão utilizados durante a preparação de amostras.

- Para as amostras de Sangue Total, a caixa de verificação Predilution (Pré-diluição) é automaticamente assinalada para refletir o passo de diluição com o Whole Blood Pretreatment Buffer (tampão de pré-tratamento de sangue total) durante o procedimento de preparação de amostras. Altere os volumes predefinidos de 1 000 μl no campo Sample Volume (Volume de Amostra) e no campo Added Diluent (Diluente Adicionado) para corresponder aos volumes que serão utilizados durante a preparação de amostras, mantendo simultaneamente o rácio de 1 parte volumétrica de Sangue Total para 1 parte volumétrica de diluente [Whole Blood Pretreatment Buffer (tampão de pré-tratamento de sangue total)].
Figura 5: Caixa de diálogo Add Samples (Adicionar Amostras): Caixa de verificação de pré-diluição assinalada

NOTA

A pré-diluição será incluída no *Fator de Concentração*, que é reportado nos resultados PCR para calcular a concentração-alvo na amostra original dos resultados PCR (consulte o capítulo 10.21.6.1 Interpretação manual dos resultados). O cálculo é efetuado pelo utilizador ou pelo LIMS durante a importação dos resultados PCR.

NOTA

A propriedade de pré-diluição de uma amostra pode ser editada depois de fechar a caixa de diálogo Add Samples (Adicionar Amostras) assinalando a caixa de verificação na coluna *Predilution* (Pré-diluição) da tabela de amostras.

8. Clique no botão **Add** (Adicionar) para adicionar a amostra à tabela de amostras.

9. Repita os passos explicados acima até adicionar todas as amostras à tabela de amostras.
10. Depois de adicionar todas as amostras, clique no botão **Close** (Fechar) para fechar a caixa de diálogo **Add Samples** (Adicionar Amostras). As amostras adicionadas são apresentadas na tabela de amostras do Ecrã de Programação (consulte a Figura 6).

![Ecrã de Programação com amostras adicionadas](image)

Figura 6: Ecrã de Programação com amostras adicionadas

NOTA
A lista de amostras pode ser organizada por colunas individuais clicando no cabeçalho da coluna. É possível selecionar várias amostras pressionando a **Tecla Shift** ou a **Tecla Ctrl** e clicando simultaneamente nas linhas de amostras. As amostras selecionadas podem ser modificadas coletivamente clicando no símbolo de chave inglesa no cabeçalho da coluna apropriada. As amostras podem ser removidas da lista selecionando-as e clicando no botão **Delete** (Eliminar) na barra de ferramentas.

11. Atribua o ensaio do kit AltoStar® CMV PCR Kit 1.5 a amostras específicas clicando na célula que está na linha da respetiva amostra e na coluna do kit AltoStar® CMV PCR Kit 1.5 (consulte a Figura 7).

12. Selecione **quantitative** (quantitativo) ou **qualitative** (qualitativo) no menu apresentado.
Figura 7: Ecrã de Programação: Atribuição de Ensaio PCR

O conjunto correto de Standards and Controls (Padrões e Controlos) é automaticamente selecionado para a aplicação de um ensaio qualitativo ou quantitativo. Adicionalmente, o volume de amostra necessário para o Processamento de Purificação (o volume morto não é tido em consideração) e o volume de eluato que continua disponível para a atribuição a outros ensaios são automaticamente ajustados nas colunas da lista de amostras Sample Volume (Volume de Amostra) e Eluate left (Eluato restante), respetivamente.
NOTA

Definições do kit AltoStar® CMV PCR Kit 1.5:

- Para a aplicação de ensaio quantitativo são selecionados QS1-4 e NTC e para a aplicação de ensaio qualitativo são selecionados QS4 e NTC.

- O volume de amostra necessário é de 500 μl, acrescido do volume morto, para o respetivo tubo de amostra (consulte o capítulo 7.3 Volume de amostra).

- O volume de eluato necessário para o kit AltoStar® CMV PCR Kit 1.5 é de 10 μl.

NOTA

Se não for possível selecionar um ensaio PCR para uma amostra, verifique na coluna Eluate left (Eluato restante) da tabela de amostras se o volume de eluato necessário para este ensaio continua disponível.

10.4.2 Importar a partir do LIMS

Tanto as propriedades de amostras como as atribuições de ensaios podem ser importadas a partir do LIMS. Para esse efeito, clique no botão Import File (Ficheiro de Importação) na barra de ferramentas. Na caixa de diálogo apresentada, selecione o Ficheiro de Importação (.psv) que contém as informações necessárias.

Para mais informações relativas à Integração LIMS, contacte o Apoio Técnico da altona Diagnostics (consulte o capítulo 14 Apoio técnico).
10.5 Criar um AltoStar® Run (processamento)

Para efeitos de processamento, as amostras na tabela de amostras têm de ser atribuídas a um AltoStar® Run (processamento) que inclui o Processamento de Purificação, assim como um ou mais Processamentos de Configuração PCR e Processamentos PCR para uma determinada amostra.

1. Assinale a caixa de verificação Sample Priority (Prioridade de Amostras) para amostras que devem ser organizadas para a mesma PCR Plate (placa PCR) para um processamento mais rápido.

 - Inicialmente, todas as amostras estão assinaladas na coluna Process Sample (Processar Amostra) indicando que as respetivas amostras têm de ser incluídas no AltoStar® Run (processamento) gerado a seguir.

 - Acima da tabela de amostras, no Ecrã de Programação (consulte a Figura 7), é apresentado Wells used (Poços utilizados) mostrando o número de poços da AltoStar® Processing Plate (placa de processamento) necessários para o processamento das amostras atualmente assinaladas na coluna Process Sample (Processar Amostra).

 - Podem ser utilizados até 96 poços num Processamento de Purificação.

NOTA

A AltoStar® Processing Plate (placa de processamento) é um consumível para Processamentos de Purificação e contém 96 poços que podem ser utilizados para o processamento de amostras. As amostras com um volume de processamento de 1 000 μl necessitam de dois poços da AltoStar® Processing Plate (placa de processamento). Portanto, o número máximo de amostras que podem ser processadas num Processamento de Purificação varia e depende do número de amostras com um volume de processamento de 1 000 μl.

 - Se o número de 96 poços for ultrapassado, o AltoStar® Run (processamento) não pode ser criado e Wells used (Poços utilizados) é apresentado a vermelho.

2. Neste caso, desmarque a seleção de amostras na coluna Process Sample (Processar Amostra) até Wells used (Poços utilizados) apresentar 96 ou um número inferior. As amostras restantes ainda assinaladas na coluna Process Sample (Processar Amostra) serão atribuídas ao AltoStar® Run (processamento) seguinte.
3. Clique no botão **Create Run** (Criar Processamento) na barra de ferramentas do Ecrã de Programação. É apresentada a caixa de diálogo **Save Run Definition** (Guardar Definição de Processamento) (consulte a Figura 8).

NOTA

Não é possível efetuar modificações adicionais às amostras depois de clicar no botão **Create Run** (Criar Processamento). Se forem necessárias alterações num AltoStar® Run (processamento) criado, o AltoStar® Run (processamento) criado tem de ser eliminado e a programação manual ou a importação do LIMS tem de ser repetida.

4. Introduza um **Run Name** (Nome do Processamento) exclusivo e, opcionalmente, uma **Description** (Descrição) para identificação do AltoStar® Run (processamento) posteriormente.

5. Clique no botão **Ok** para guardar o AltoStar® Run (processamento).

Figura 8: Caixa de diálogo Save Run Definition (Guardar Definição de Processamento)

As amostras que foram atribuídas a um AltoStar® Run (processamento) são removidas da tabela de amostras do Ecrã de Programação. Para criar mais AltoStar® Runs (processamentos) para as amostras restantes na tabela de amostras:

7. Clique no botão **Create Run** (Criar Processamento) e repita os passos 4 e 5.

10.6 Iniciar um Processamento de Purificação

1. Selecione **Purification → Start Purification** (Purificação → Iniciar Purificação) na barra de menus. Em alternativa, regresse ao Ecrã Inicial do AltoStar® Connect software e selecione no botão **Start Purification** (Iniciar Purificação).

 - É apresentado o ecrã Start Purification Run (Iniciar Processamento de Purificação) (consulte a Figura 9). Cada AltoStar® Run (processamento) programado inclui um Processamento de Purificação.

 - Os Processamentos de Purificação pendentes são apresentados na tabela **Programmed Purification Runs** (Processamentos de Purificação Programados) no lado esquerdo do ecrã.

 ![Ecrã Start Purification Run](image)

Figura 9: Ecrã Start Purification Run (Iniciar Processamento de Purificação)

2. Selecione o Processamento de Purificação a iniciar na tabela **Programmed Purification Runs** (Processamentos de Purificação Programados).
As amostras incluídas no Processamento de Purificação selecionado são apresentadas na tabela no lado direito do ecrã [Samples in selected Purification Run (Amostras no Processamento de Purificação selecionado)].

Antes de clicar no botão Start Run (Iniciar Processamento) na barra de ferramentas, prepare as amostras do Processamento de Purificação selecionado e os reagentes, conforme descrito nos capítulos 10.6.1 Preparação de amostras e 10.6.2 Preparação de reagentes para um Processamento de Purificação.

10.6.1 Preparação de amostras

Para garantir resultados corretos, as especificações relativas ao tipo de amostra, recolha de amostra, volume de amostra, tubo de amostra e código de barras da amostra (consulte o capítulo 7 Amostras), bem como à preparação de amostras, têm de ser cuidadosamente seguidas.

1. Prepare todas as amostras que têm de ser utilizadas no Processamento de Purificação seguinte. As amostras necessárias para o Processamento de Purificação selecionado estão listadas na tabela [Samples in selected Purification Run (Amostras no Processamento de Purificação selecionado)] no lado direito do ecrã Start Purification Run (Iniciar Processamento de Purificação).

2. Providencie, pelo menos, 500 µl de volume de amostra, acrescido do volume morto necessário, num tubo de amostra adequado.

NOTA

As amostras não podem apresentar constituintes sólidos e viscosidade elevada. Os constituintes sólidos e a viscosidade elevada interferirão com a transferência de amostra no AltoStar® AM16 e as amostras não serão processadas.

NOTA

O volume de amostra não é verificado pelo sistema antes do processamento. As amostras com um volume insuficiente não serão processadas e será assinalado um erro durante o passo de transferência de amostra.
NOTA

Se for necessário pré-diluir as amostras: O diluente de pré-diluição, que não é compatível com esta aplicação, poderá afetar a estabilidade do ácido nucleico, a transferência de amostra e o desempenho de purificação.

10.6.1.1 Plasma

As amostras de plasma sem constituintes sólidos e viscosidade elevada podem ser processadas sem pré-tratamento no AltoStar® AM16.

10.6.1.2 Sangue Total

1. Transfira o volume necessário de Sangue Total, sem constituintes sólidos e viscosidade elevada, do tubo inicial para um tubo de amostra etiquetado com um código de barras adequado e adicione o mesmo volume de Whole Blood Pretreatment Buffer (tampão de pré-tratamento de sangue total) à amostra, de forma a obter um rácio volumétrico de 1:1.

2. De imediato, misture bem agitando em vortex durante 10 segundos. Uma mistura insuficiente pode tornar a amostra desadequada para efeitos de processamento devido ao aumento da viscosidade ou coagulação.

3. Tenha cuidado para evitar a formação de bolhas. Caso se formem bolhas durante a mistura, pode removê-las ao fim de 2 - 3 minutos batendo levemente no tubo de amostra. Não centrifugue a amostra.

4. Inicie o Processamento de Purificação no AltoStar® AM16 para as amostras pré-tratadas de Sangue Total no prazo de 60 minutos a partir do início do pré-tratamento.

NOTA

Uma incubação prolongada ou mistura insuficiente durante a preparação pode tornar a amostra desadequada para efeitos de processamento devido ao aumento da viscosidade.
10.6.1.3 Urina
As amostras de urina sem constituintes sólidos e viscosidade elevada podem ser processadas sem pré-tratamento no AltoStar® AM16.

10.6.2 Preparação de reagentes para um Processamento de Purificação

1. Certifique-se de que prepara quantidades suficientes de reagente dentro do prazo de validade que tenham o mesmo Número de Carga.

O Número de Carga consiste nos quatro últimos dígitos do número de lote dos recipientes do Lysis Buffer (tampão de lise) e do Wash Buffer (tampão de lavagem) e dos tubos de Magnetic Beads (esferas magnéticas), Enhancer (amplificador) e Elution Buffer (tampão de eluição).

NOTA
Para sua conveniência, o Número de Carga de 4 dígitos (consulte a Figura 10) é apresentado na parte exterior de cada caixa de componentes.

Figura 10: Número de Carga
NOTA

Antes do início do processamento, o AltoStar® AM16 verifica automaticamente:

1. se existe volume de reagente suficiente dos componentes do kit AltoStar® Purification Kit 1.5 e do AltoStar® Internal Control 1.5 (controlo interno),
2. se os Números de Carga dos componentes carregados do kit AltoStar® Purification Kit 1.5 são congruentes.

2. Inspecione visualmente o Lysis Buffer (tampão de lise) quanto à presença de precipitados. Se existirem precipitados visíveis, aqueça-o a uma temperatura inferior a 50 °C. Rode intermitentemente o recipiente com cuidado e sem molhar a selagem até os precipitados ficarem totalmente dissolvidos. Podem ocorrer ligeiras mudanças de cor no Lysis Buffer (tampão de lise). Estas ligeiras mudanças de cor não indicam uma alteração na qualidade do tampão.

4. Descongele totalmente o número necessário de tubos IC [AltoStar® Internal Control 1.5 (controlo interno)] e agite em vortex durante 5 segundos.

10.6.3 Carregamento de instrumento para um Processamento de Purificação

1. Clique no botão **Start Run** (Iniciar Processamento) na barra de ferramentas do ecrã Start Purification Run (Iniciar Processamento de Purificação) para visualizar a caixa de diálogo **Loading** (Carregamento) (consulte a Figura 11).

A caixa de diálogo **Loading** (Carregamento) consiste numa representação visual da plataforma AltoStar® AM16 no topo e numa tabela especificando o transporte, as respectivas calhas na plataforma AltoStar® AM16 para cada transporte, o material a carregar em cada transporte e os comentários relativos à carga do transporte.
Loading

Please load the following labware:

<table>
<thead>
<tr>
<th>Carrier</th>
<th>Track</th>
<th>Material</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - 6</td>
<td>Tips 1000 µl</td>
<td>Replace empty Tip Racks with completely filled new ones</td>
</tr>
<tr>
<td>2</td>
<td>7 - 12</td>
<td>Tips 300 µl</td>
<td>Replace empty Tip Racks with completely filled new ones</td>
</tr>
<tr>
<td>2</td>
<td>7 - 12</td>
<td>Eluate Plate</td>
<td>New Eluate Plate</td>
</tr>
<tr>
<td>3 - 4</td>
<td>13 - 16</td>
<td>Lysis Buffer Wash Buffer 1 Wash Buffer 2 Wash Buffer 3</td>
<td>One or several containers of each buffer anywhere on these carriers</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>Enhancer Internal Control Magnetic Beads Elution Buffer</td>
<td>One or several tubes of each component anywhere on this carrier</td>
</tr>
<tr>
<td>6 - 11</td>
<td>18 - 23</td>
<td>Samples</td>
<td>10 samples on up to 6 carriers</td>
</tr>
<tr>
<td>12</td>
<td>24 - 30</td>
<td>Processing Plate</td>
<td>One new Processing Plate</td>
</tr>
<tr>
<td>12</td>
<td>24 - 30</td>
<td>Tip Rack Plate</td>
<td>One new Processing Plate</td>
</tr>
<tr>
<td>12</td>
<td>24 - 30</td>
<td>Tip Rack</td>
<td>Empty unused Tip Rack</td>
</tr>
</tbody>
</table>

- Reset 1000µl tip counter
- Reset 300µl tip counter

Figura 11: Caixa de diálogo Loading (Carregamento)
NOTA

Para visualizar a posição de um item num transporte e a posição do transporte na plataforma AltoStar® AM16, selecione a respetiva linha da tabela na caixa de diálogo Loading (Carregamento). É visualizada a posição do item e respetivo transporte:

1) Realçado a vermelho na representação visual da plataforma de instrumentos.

2) No AltoStar® AM16 através de Luzes de Carga intermitentes acima das calhas onde o transporte selecionado tem de ser colocado.

2. Carregue o material, os reagentes preparados e as amostras preparadas nos transportes adequados, conforme se segue:

<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Um Transporte de Pontas</td>
<td>5 x 1 000 μl Bastidores de Pontas</td>
</tr>
</tbody>
</table>

- Troque apenas Bastidores de Pontas de 1 000 μl completamente vazios por Bastidores de Pontas de 1 000 μl completamente cheios no Transporte de Pontas.

NOTA

A troca de Bastidores de Pontas que não estejam completamente vazios, assim como o manuseio de pontas individuais, poderão interferir com a gestão automática das pontas e provocar a interrupção do processamento.
<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
</table>
| 7 - 12 | Um Transporte de Pontas e Placas | 3 x 300 μl Bastidores de Pontas
1 x Eluate Plate (placa de eluato) |

- Troque apenas Bastidores de Pontas de 300 μl **completamente vazios** por Bastidores de Pontas de 300 μl **completamente cheios** no Transporte de Pontas e Placas.

- Coloque a Eluate Plate (placa de eluato) com o poço A1 à esquerda da posição da placa preta. A posição da placa na parte frontal não é utilizada durante os Processamentos de Purificação.

NOTA

A troca de Bastidores de Pontas que não estejam completamente vazios, assim como o manuseio de pontas individuais, poderão interferir com a gestão automática das pontas e provocar a interrupção do processamento.
<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
</table>
| 13 - 16 | Um ou dois Transportes do Recipiente | até 8 recipientes de: Lysis Buffer (tampão de lise)
Wash Buffer (tampão de lavagem) 1
Wash Buffer (tampão de lavagem) 2
Wash Buffer (tampão de lavagem) 3 |

- Carregue um ou dois Transportes do Recipiente com o máximo de oito recipientes de Lysis Buffer (tampão de lise), Wash Buffer (tampão de lavagem) 1, Wash Buffer (tampão de lavagem) 2 e Wash Buffer (tampão de lavagem) 3.
- Empurre cuidadosamente os recipientes até ao fundo do transporte.
- Remova e elimine todas as películas de selagem dos recipientes.

NOTA

Iniciar um Processamento de Purificação com as películas de selagem nos recipientes pode provocar a interrupção do processamento durante o processamento.

NOTA

A posição dos recipientes individuais nos respetivos transportes é arbitrária.
Descrição do transporte

Material a carregar

- Carregue um Transporte do Tubo 24 com, no máximo, 24 tubos de IC, Magnetic Beads (esferas magnéticas), Enhancer (amplificador) e Elution Buffer (tampão de eluição).

- Empurre com cuidado os tubos totalmente até ao fundo do transporte e rode-os até que os códigos de barras do tubo fiquem visíveis nas janelas do transporte.

- Remova todas as tampas dos tubos e armazene-as para reutilização.

- Armazene as tampas para reutilização num local limpo.

NOTA

- A reutilização de tampas para qualquer outro tubo que não o original poderá conduzir a contaminação cruzada.

NOTA

- A posição dos tubos individuais no transporte é arbitrária.

NOTA

- Iniciar um Processamento de Purificação com as tampas nos tubos pode provocar a interrupção do processamento durante o processamento.
Carregue as amostras preparadas para o Processamento de Purificação em, no máximo, seis transportes de amostras. Podem ser utilizados dois tipos de transporte em paralelo no mesmo processamento:

- Para tubos de amostra de 11 - 14 mm de diâmetro exterior, utilize o Transporte do Tubo 32.
- Para tubos de amostra de 14,5 - 18 mm de diâmetro exterior, utilize o Transporte do Tubo 24.

Empurre com cuidado os tubos totalmente até ao fundo do transporte e rode-os até que os códigos de barras do tubo fiquem visíveis nas janelas do transporte.

NOTA

A posição dos tubos individuais nos transportes é arbitrária.
NOTA

Iniciar um Processamento de Purificação com as tampas nos tubos pode provocar a interrupção do processamento durante o processamento.

<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 30</td>
<td>Transporte Agitador Aquecedor</td>
<td>1 x AltoStar® Processing Plate (placa de processamento)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x Placa do Ponto de Espera de Pontas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x Bastidor do Ponto de Espera de Pontas</td>
</tr>
</tbody>
</table>

• Coloque uma Placa do Ponto de Espera de Pontas não utilizada na parte inferior da posição frontal e um Bastidor do Ponto de Espera de Pontas não utilizado na parte superior da posição frontal e certifique-se de que ambos os itens estão bloqueados na respetiva posição.

• Coloque uma AltoStar® Processing Plate (placa de processamento) não utilizada na segunda posição a partir da frente e certifique-se de que está bloqueada na devida posição.

3. Carregue os transportes com o código de barras do transporte direcionado para a retaguarda virado para a direita.

4. Introduza os transportes preenchidos nas respetivas calhas, entre os blocos deslizantes da parte frontal e traseira do Tabuleiro de Carga, até que estes toquem nos ganchos de paragem no lado mais afastado do Tabuleiro de Carga.
5. Verifique se a Chapa de Ejeção de Pontas e o Recipiente de Eliminação de Pontas estão na posição correta e se foi colocado um novo Saco de Resíduos no recipiente.

6. Clique em **Ok** na caixa de diálogo **Loading** (Carregamento) para avançar com o processo de carga.

NOTA

Clicando em **Cancel** (Cancelar), o Processamento de Purificação será cancelado, mas pode ser iniciado novamente (consulte o capítulo 10.6 **Iniciar um Processamento de Purificação**).

É apresentada a caixa de diálogo **Tip Park Plate** (Placa do Ponto de Espera de Pontas) (consulte a Figura 12).
Figura 12: Caixa de diálogo Tip Park Plate (Placa do Ponto de Espera de Pontas)

7. Digitalize o código de barras da Placa do Ponto de Espera de Pontas em duplicado com o scanner de código de barras, para garantir que a placa não foi utilizada em processamentos anteriores.

8. Clique em Ok para confirmar a introdução.

O AltoStar® AM16 coloca os transportes no instrumento e efetua verificações respeitantes ao código de barras e ao volume de reagente.
NOTA

O AltoStar® AM16 verifica automaticamente:

1) O tipo e a localização corretos dos transportes carregados
2) A identidade e a posição corretas dos itens carregados nos transportes
3) A congruência do lote dos componentes do kit AltoStar® Purification Kit 1.5 [Lysis Buffer (tampão de lise), Wash Buffer (tampão de lavagem), Magnetic Beads (esferas magnéticas), Enhancer (amplificador) e Elution Buffer (tampão de eluição)]
4) O prazo de validade de todos os reagentes carregados
5) A presença de volumes de reagente suficientes
6) A exclusividade dos códigos de barras da amostra
7) O posicionamento correto dos itens carregados manualmente no Transporte Agitador Aquecedor
8) O posicionamento correto da Chapa de Ejeção de Pontas

Se alguma destas verificações falhar, é apresentada uma caixa de diálogo de mensagem especificando o problema em questão e as instruções para corrigir o problema em conformidade. Para mais informações relativamente à resolução de erros, consulte o Manual IVD do Operador AltoStar® Connect software (Hamilton, capítulo 4 Resolução de Problemas e Mensagens de Erro).

NOTA

Alterar as posições de qualquer item carregado depois de o transporte ter sido colocado no instrumento dá origem ao cancelamento do Processamento de Purificação e danifica o instrumento.

Quando todas as verificações forem aprovadas, é apresentada a caixa de diálogo Loading complete (Carga Concluída) (consulte a Figura 13).
9. Confirme a caixa de diálogo **Loading complete** (Carga Concluída) clicando em **Ok** ou aguarde 10 segundos para o início automático do processo.

NOTA

Clicando em **Cancel** (Cancelar), o Processamento de Purificação será cancelado, mas pode ser iniciado novamente (consulte o capítulo 10.6 Iniciar um Processamento de Purificação).

O Processamento de Purificação é iniciado e será conduzido sem a interação do utilizador.
10.7 Durante o Processamento de Purificação

Não é necessária a interação de utilizador até à conclusão do Processamento de Purificação. O Processing Status Screen (Ecrã de Estado de Processamento) é apresentado (consulte a Figura 14) mostrando o estado do Processamento de Purificação e o tempo estimado restante.

Figura 14: Ecrã de Estado de Processamento

NOTA

Empurrar ou puxar os transportes ou a porta do AltoStar® AM16 durante um Processamento de Purificação poderá cancelar o processamento.
NOTA

A interrupção do Processamento de Purificação após a caixa de diálogo Loading complete (Carga Concluída) ser confirmada anulará o AltoStar® Run (processamento), impedindo um reinício. Para repetir processamentos cancelados, consulte o Manual IVD do Operador AltoStar® Connect software (Hamilton, capítulo 3.8.14, Resultados de Purificação).

NOTA

Depois de concluída a transferência de amostra para a AltoStar® Processing Plate (placa de processamento), os transportes de amostra podem ser descarregados a qualquer momento. O botão Unload samples (Descarregar amostras) na barra de ferramentas ficará ativo e pode ser clicado. Os transportes da amostra serão descarregados da plataforma e os tubos de amostra podem ser removidos. O Processamento de Purificação não será interrompido.

NOTA

Os componentes necessários do kit AltoStar® CMV PCR Kit 1.5 para o Processamento de Configuração PCR subsequente podem ser pré-visualizados para permitir a preparação destes componentes durante o Processamento de Purificação anterior:

1. Clique em PCR Setup → Start PCR Setup (Configuração PCR → Iniciar Configuração PCR) na barra de menus para aceder ao ecrã Start PCR Setup Run (Iniciar Processamento de Configuração PCR).

2. Consulte as tabelas Controls in selected PCR Setup Run (Controlos no Processamento de Configuração PCR selecionado) e Required master tubes for the selected PCR Setup Run (Tubos principais necessários para o Processamento de Configuração PCR selecionado) para informações sobre os componentes necessários.

10.8 Conclusão do Processamento de Purificação

No final do Processamento de Purificação, é apresentada a caixa de diálogo **Run finished** (Processamento Concluído) (consulte a Figura 15).

![Run finished dialog box](image)

Figura 15: Caixa de diálogo Run finished (Processamento Concluído)

1. Certifique-se de que o Tabuleiro de Carga está vazio.
2. Confirme a caixa de diálogo **Run finished** (Processamento concluído) clicando em **Ok**.

O AltoStar® AM16 descarárgará os transportes. Certifique-se de que não fica em frente aos transportes a descarregar.

Depois de descarregar é apresentada a caixa de diálogo **Maintenance** (Manutenção) (consulte a Figura 16).

3. Siga as instruções da caixa de diálogo **Maintenance** (Manutenção).
A tabela da caixa de diálogo apresenta componentes do kit AltoStar® Purification Kit 1.5 e do IC [AltoStar® Internal Control 1.5 (controlo interno)] com volume suficiente para ser novamente utilizado em Processamentos de Purificação subsequentes.

1. Se um Processamento de Configuração PCR que utiliza a Eluate Plate (placa de eluato) atualmente carregada for diretamente iniciado após o Processamento de Purificação, a Eluate Plate (placa de eluato) pode manter-se na posição do transporte à temperatura ambiente (máx. 30 ºC) até 6 horas. Se o Processamento de Configuração PCR não for diretamente iniciado após o Processamento de Purificação, sele e armazene a Eluate Plate (placa de eluato) conforme descrito no capítulo 10.10.2 Selagem da Eluate Plate (placa de eluato).

2. Feche os tubos com as tampas apropriadas. Evite trocar as tampas entre tubos quando fechar os reagentes após a utilização.

3. Feche os recipientes com AltoStar® Container Re-Sealing Foil (película de reposição de selagem de recipientes) não usada.

4. Armazene os reagentes para reutilização conforme descrito nos capítulos 4 Armazenamento e manuseamento nas instruções de utilização do kit AltoStar® Purification Kit 1.5 e do AltoStar® Internal Control 1.5 (controlo interno), respetivamente.
5. Elimine os componentes do kit AltoStar® Purification Kit 1.5 e do AltoStar® Internal Control 1.5 (controlo interno) não listados na tabela.

Elimine as amostras e os materiais usados (consulte o capítulo 11 Eliminação).

6. Confirme a caixa de diálogo Maintenance (Manutenção) clicando em Ok.

ATENÇÃO

As amostras devem ser sempre tratadas como sendo infecciosas e com risco (biológico), em conformidade com os procedimentos laboratoriais de segurança. No caso de derrames de material da amostra, utilize imediatamente um desinfetante apropriado. Manuseie os materiais contaminados como se se tratasse de materiais com risco biológico.

NOTA

Os resíduos líquidos e quaisquer líquidos que contenham Lysis Buffer (tampão de lise) ou Wash Buffer (tampão de lavagem) 1 contêm tiocianato de guanidina, podendo formar compostos tóxicos, altamente reativos e voláteis quando combinados com lixívia ou ácidos fortes.

NOTA

As instruções para o procedimento de manutenção diária quanto à eliminação de resíduos líquidos e materiais usados encontram-se no Manual IVD do Operador AltoStar® AM16 (Hamilton, capítulo 3.5 Manutenção).
10.9 Resultados de Processamento de Purificação

Os resultados do Processamento de Purificação são guardados no AltoStar® Connect software.

1. Clique em Purification → Purification Results (Purificação → Resultados de Purificação) na barra de menus para aceder ao Results Screen (Ecrã de Resultados) (consulte a Figura 17).

![Results Screen](image)

Figura 17: Results Screen (Ecrã de Resultados)

O Results Screen (Ecrã de Resultados) apresenta uma tabela com todas as amostras utilizadas no mais recente Processamento de Purificação e uma coluna Status (Estado) à direita que indica se o Processamento de Purificação de uma determinada amostra ficou totalmente concluído (consulte a Tabela 6).
Tabela 6: Resultados de Processamento de Purificação

<table>
<thead>
<tr>
<th>Status (estado)</th>
<th>Resultado de Processamento de Purificação</th>
</tr>
</thead>
</table>
| Processado | • A amostra foi processada com sucesso no Processamento de Purificação.
 • O respetivo eluato está pronto para ser utilizado num Processamento de Configuração PCR. |
| Erro | • A amostra não foi processada com sucesso.
 • Esta amostra não tem eluato disponível.
 • A amostra será automaticamente omitida no Processamento de Configuração PCR seguinte. |

2. Para visualizar os resultados de Processamentos de Purificação anteriores, clique no botão **Load** (Carregar) na barra de menus, selecione o Processamento de Purificação pretendido a partir da lista na caixa de diálogo **Load Results** (Carregar Resultados) e clique em **Ok**.

São automaticamente gerados dois ficheiros de resultado de Processamento de Purificação pelo AltoStar® Connect software:

- Um ficheiro LIMS (.xml) para passar informações detalhadas sobre o Processamento de Purificação, incluindo resultados, para o LIMS.
- Um relatório (.pdf) com informações detalhadas sobre o Processamento de Purificação, incluindo resultados, para efeitos de documentação.

Estes ficheiros estão guardados no local especificado em System Settings (Definições do Sistema) do AltoStar® Connect software.

NOTA

Os ficheiros de resultado de Processamento de Purificação podem ser novamente gerados carregando o respetivo Processamento de Purificação e clicando no botão **Create LIMS File** (Criar Ficheiro LIMS), para gerar o ficheiro LIMS, ou no botão **Create Report** (Criar Relatório), para gerar o relatório.
10.10 Estabilidade do eluato

Após a conclusão do Processamento de Purificação, os eluatos na Eluate Plate (placa de eluato) não selada mantêm-se estáveis à temperatura ambiente (máx. 30 °C) durante 6 horas.

<table>
<thead>
<tr>
<th>ATENÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>O armazenamento de eluatos nas condições erradas poderá provocar a degradação da sequência-alvo do CMV.</td>
</tr>
</tbody>
</table>

10.10.1 Armazenamento

Os eluatos numa Eluate Plate (placa de eluato) selada [consulte o capítulo 10.10.2 Selagem da Eluate Plate (placa de eluato)] podem ser armazenados a uma temperatura entre 2 °C e 8 °C até 24 horas antes do início de um Processamento de Configuração PCR.

<table>
<thead>
<tr>
<th>ATENÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>O armazenamento de eluatos nas condições erradas poderá provocar a degradação da sequência-alvo do CMV.</td>
</tr>
</tbody>
</table>

10.10.2 Selagem da Eluate Plate (placa de eluato)

NOTA

A utilização de seladores de placa ou parâmetros de selagem desadequados poderá danificar os eluatos, assim como a Eluate Plate (placa de eluato), a AltoStar® Eluate Plate Sealing Foil (película de selagem da placa de eluato) e o plate sealer (selador de placa).

Se o AltoStar® Plate Sealer (selador de placa) for utilizado para selagem, siga os seguintes passos:

1. Acione o AltoStar® Plate Sealer (selador de placa) e certifique-se de que o adaptador de placa não está na gaveta.
2. Certifique-se de que as definições do AltoStar® Plate Sealer (selador de placa) são as seguintes: 170 °C e 2 segundos.
3. Aguarde até ser atingida a temperatura definida de 170 °C. Esta operação pode demorar vários minutos.
4. Coloque a Eluate Plate (placa de eluato) no adaptador de placa do AltoStar® Plate Sealer (selador de placa).
5. Coloque uma AltoStar® Eluate Plate Sealing Foil (película de selagem da placa de eluato) na Eluate Plate (placa de eluato). Alinhe o canto de corte da película de selagem com o canto de corte da Eluate Plate (placa de eluato). Certifique-se de que todos os poços da Eluate Plate (placa de eluato) estão cobertos com película. Esteja particularmente atento ao verificar se o poço no canto de corte está devidamente coberto.

NOTA

Operar o AltoStar® Plate Sealer (selador de placa) sem o adaptador de placa colocado na gaveta poderá danificar o selador. Neste caso, contacte o Apoio Técnico da altona Diagnostics para obter assistência (consulte o capítulo 14 Apoio técnico).
NOTA

Se a estrutura ou a AltoStar® Eluate Plate Sealing Foil (pelicula de selagem da placa de eluato) estiver incorretamente colocada, a película pode colar à placa de aquecimento no AltoStar® Plate Sealer (selador de placa) durante a selagem. Tal danificará o selador. Neste caso, deixe o AltoStar® Plate Sealer (selador de placa) arrefecer até atingir a temperatura ambiente e contacte o Apoio Técnico da altona Diagnostics para obter assistência (consulte o capítulo 14 Apoio técnico).

6. Monte a estrutura de selagem no topo para prender a película de selagem.

7. Abra a gaveta através do botão Operate (Operar).

8. Coloque o conjunto constituido pelo adaptador de placa, a Eluate Plate (placa de eluato), a AltoStar® Eluate Plate Sealing Foil (pelicula de selagem da placa de eluato) e a estrutura de selagem no AltoStar® Plate Sealer (selador de placa) e pressione o botão Operate (Operar).

9. A gaveta fecha automaticamente, sela durante 2 segundos e reabre automaticamente.

10. Retire a Eluate Plate (placa de eluato) selada, assim como o adaptador de placa do AltoStar® Plate Sealer (selador de placa), e feche o AltoStar® Plate Sealer (selador de placa) pressionando o botão Close (Fechar).

10.10.3 Remover a selagem da Eluate Plate (placa de eluato)

Remova a AltoStar® Eluate Plate Sealing Foil (pelicula de selagem da placa de eluato) da Eluate Plate (placa de eluato) conforme se segue:

1. Centrifugue brevemente a Eluate Plate (placa de eluato) numa centrífuga de placas para remover qualquer líquido do interior da película de selagem.

2. Pressione a Eluate Plate (placa de eluato) sobre uma mesa para evitar movimentos súbitos da placa durante a remoção da película de selagem.

3. Comece a descolar num canto e, de forma lenta e firme, puxe a película de selagem em direção ao canto oposto na diagonal, até removê-la totalmente.
10.11 Iniciar um Processamento de Configuração PCR

1. Selecione **PCR Setup → Start PCR Setup** (Configuração PCR → Iniciar Configuração PCR) na barra de menus. Em alternativa, regresse ao Ecrã Inicial do AltoStar® Connect software e selecione no botão **Start PCR Setup** (Iniciar Configuração PCR). É apresentado o ecrã **Start PCR Setup Run** (Iniciar Processamento de Configuração PCR) (consulte a Figura 18).

Os Processamentos de Configuração PCR pendentes são apresentados na tabela **Programmed PCR Setup Runs** (Processamentos de Configuração PCR Programados) no lado esquerdo do ecrã.

Figura 18: Ecrã Iniciar Processamento de Configuração PCR
2. Selecione o Processamento de Configuração PCR a iniciar na tabela **Programmed PCR Setup Runs** (Processamentos de Configuração PCR Programados).

- As amostras incluídas no Processamento de Configuração PCR selecionado são apresentadas na tabela no lado superior direito do ecrã **[Samples in selected PCR Setup Run]** (Amostras no Processamento de Configuração PCR selecionado).

- Os Padrões de Quantificação e os Controlos necessários para o Processamento de Configuração PCR selecionado são apresentados na tabela no lado direito central do ecrã **[Controls in selected PCR Setup Run]** (Controlos no Processamento de Configuração PCR selecionado).

- O número de tubos principais necessários para o Processamento de Configuração PCR selecionado é apresentado na tabela no lado inferior direito do ecrã **[Required master tubes for the selected PCR Setup Run]** (Tubos principais necessários para o Processamento de Configuração PCR selecionado).

NOTA

O número de amostras prioritárias num Processamento de Configuração PCR é apresentado na coluna **No. of prioritized Samples** (N.º de Amostras prioritárias). Realize os Processamentos de Configuração PCR com amostras prioritárias em primeiro lugar para permitir o processamento mais rápido dessas amostras.

Antes de clicar no botão **Start Run** (Iniciar Processamento) na barra de ferramentas, prepare os reagentes necessários, conforme descrito no capítulo 10.12 Preparação de reagentes para um Processamento de Configuração PCR. Se a Eluate Plate (placa de eluato) necessária para o Processamento de Configuração PCR selecionado tiver sido selada para efeitos de armazenamento, prepare-a conforme descrito no capítulo 10.10.3 Remover a selagem da Eluate Plate (placa de eluato).
10.12 Preparação de reagentes para um Processamento de Configuração PCR

1. Descongele totalmente os Padrões de Quantificação necessários, os Controlos e o número necessário de Tubos Principais à temperatura ambiente (máx. 30 °C).

2. Misture os reagentes por agitação ligeira em vortex.

3. Centrifugue brevemente os tubos para remover as gotas da tampa.

ATENÇÃO

A falta de centrifugação dos componentes do produto após a descongelação poderia provocar a contaminação dos componentes com resíduos de reagentes nas tampas e, como consequência, comprometer o desempenho do produto.
10.12.1 Carregar o AltoStar® AM16 para um Processamento de Configuração PCR

1. Clique no botão **Start Run** (Iniciar Processamento) na barra de ferramentas do ecrã **Start PCR Setup Run** (Iniciar Processamento de Configuração PCR) para visualizar a caixa de diálogo **Loading** (Carregamento) (consulte a Figura 19).

Figura 19: Caixa de diálogo Loading (Carregamento)
A caixa de diálogo **Loading** (Carregamento) consiste numa representação visual da plataforma AltoStar® AM16 no topo e uma tabela especificando os transportes, as respetivas calhas na plataforma AltoStar® AM16 para cada transporte, o material a carregar em cada transporte e os comentários relativos à carga do transporte.

NOTA

Para visualizar a posição de um item num transporte e a posição do transporte na plataforma AltoStar® AM16, selecione a respetiva linha da tabela na caixa de diálogo **Loading** (Carregamento).

É visualizada a posição do item e respetivo transporte:

1) Realçado a vermelho na representação visual da plataforma de instrumentos.

2) No AltoStar® AM16 através de Luzes de Carga intermitentes acima das calhas onde o transporte selecionado tem de ser colocado.

2. Carregue o material necessário, a Eluate Plate (placa de eluato) preparada e os reagentes preparados nos transportes adequados, conforme se segue:
Descrição do transporte

<table>
<thead>
<tr>
<th>Calha</th>
<th>Material a carregar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>5 x 1 000 µl Bastidores de Pontas</td>
</tr>
</tbody>
</table>

NOTA

- Troque apenas Bastidores de Pontas de 1 000 µl **completamente vazios** por Bastidores de Pontas de 1 000 µl **completamente cheios** no Transporte de Pontas.

NOTA

A troca de Bastidores de Pontas que não estejam completamente vazios, assim como o manuseio de pontas individuais, poderão interferir com a gestão automática das pontas e provocar a interrupção do processamento.
<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
</table>
| 7 - 12 | Um Transporte de Pontas e Placas | 3 x 300 µl Bastidores de Pontas
1 x Eluate Plate (placa de eluato)
1 x PCR Plate (placa PCR) |

- Troque apenas Bastidores de Pontas de 300 µl **completamente vazios** por Bastidores de Pontas de 300 µl **completamente cheios** no Transporte de Pontas e Placas.
- Coloque a Eluate Plate (placa de eluato) com o poço A1 à esquerda da posição da placa preta.
- Coloque uma PCR Plate (placa PCR) com o poço A1 à esquerda da posição da placa frontal prateada.

NOTA

A troca de Bastidores de Pontas que não estejam completamente vazios, assim como o manuseio de pontas individuais, poderão interferir com a gestão automática das pontas e provocar a interrupção do processamento.
Descrição do transporte

Material a carregar

<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Um Transporte do Tubo 24</td>
<td>1 Tubo de Conjugação por ensaio</td>
</tr>
</tbody>
</table>

- Carregue um Transporte do Tubo 24 com um Tubo de Conjugação não utilizado para cada ensaio no Processamento de Configuração PCR.
- Empurre com cuidado os tubos totalmente até ao fundo do transporte e rode-os até que os códigos de barras do tubo fiquem visíveis na janela do transporte.

NOTA

A posição dos tubos individuais no transporte é arbitrária.
<table>
<thead>
<tr>
<th>Calha</th>
<th>Descrição do transporte</th>
<th>Material a carregar</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 - 17</td>
<td>Um a quatro Transportes do Tubo de Reagente 32</td>
<td>Componentes do ensaio</td>
</tr>
</tbody>
</table>

- Carregue o Transporte do Tubo de Reagente 32 com os componentes do ensaio necessários para o Processamento de Configuração PCR.
- Empurre com cuidado os tubos totalmente até ao fundo do transporte e rode-os até que os códigos de barras do tubo fiquem visíveis na janela do transporte.

NOTA

A posição dos tubos individuais nos transportes é arbitrária.

NOTA

O volume dos componentes carregados não é verificado pelo sistema antes do processamento. Um volume de componente insuficiente impedirá uma configuração PCR bem-sucedida relativamente ao ensaio em questão.
NOTA

Iniciar um Processamento de Configuração PCR com as tampas nos tubos pode provocar a interrupção do processamento durante o processamento.

3. Carregue os transportes com o código de barras do transporte direcionado para a retaguarda virado para a direita.

4. Introduza os transportes preenchidos nas respetivas calhas, entre os blocos deslizantes da parte frontal e traseira do Tabuleiro de Carga, até que estes toquem nos ganchos de paragem no lado mais afastado do Tabuleiro de Carga.

NOTA

Empurrar os transportes para além dos ganchos de paragem pode danificar o instrumento e interferir com o processo de carga.

5. Verifique se a Chapa de Ejeção de Pontas e o Recipiente de Eliminação de Pontas estão na posição correta e se foi colocado um novo Saco de Resíduos no recipiente.

6. Clique em Ok na caixa de diálogo Loading (Carregamento) para avançar com o processo de carga.

NOTA

Clicando em Cancel (Cancelar), o Processamento de Configuração PCR será cancelado, mas pode ser iniciado novamente (consulte o capítulo 10.11 Iniciar um Processamento de Configuração PCR).

O AltoStar® AM16 coloca os transportes no instrumento e efetua a verificação do código de barras.
NOTA

O AltoStar® AM16 verifica automaticamente:

1) O tipo e a localização corretos dos transportes carregados.

2) A identidade e a posição corretas dos itens carregados nos transportes.

3) A congruência do lote dos componentes dos kits de ensaio individuais AltoStar®.

4) A validade de todos os componentes do ensaio AltoStar® carregados.

5) O posicionamento correto da Chapa de Ejeção de Pontas.

Se alguma destas verificações falhar, é apresentada uma caixa de diálogo de mensagem especificando o problema em questão e as instruções para corrigir o problema em conformidade. Para mais informações relativamente à resolução de erros, consulte o Manual IVD do Operador AltoStar® Connect software (Hamilton, capítulo 4 Resolução de Problemas e Mensagens de Erro).

NOTA

Alterar as posições de qualquer item carregado depois de o transporte ter sido colocado no instrumento pode dar origem ao cancelamento do Processamento de Configuração PCR e/ou danificar o instrumento.

Quando todas as verificações forem aprovadas, é apresentada a caixa de diálogo **Loading complete** (Carga Concluída) (consulte a Figura 20).
7. Confirme a caixa de diálogo **Loading complete** (Carga Concluída) clicando em **Ok** ou aguarde 10 segundos para o início automático do processo.

NOTA

Clicando em **Cancel** (Cancelar), o Processamento de Configuração PCR será cancelado, mas pode ser iniciado novamente (consulte o capítulo 10.11 Iniciar um Processamento de Configuração PCR).

O Processamento de Configuração PCR é iniciado e será conduzido sem a interação de utilizador.
10.13 Durante o Processamento de Configuração PCR

Não é necessária a interação de utilizador até à conclusão do Processamento de Configuração PCR. O Processing Status Screen (Ecrã de Estado de Processamento) é apresentado (consule a Figura 21) mostrando o estado do Processamento de Configuração PCR e o tempo estimado restante.

Figura 21: Processing Status Screen (Ecrã de Estado de Processamento)

NOTA

Empurrar ou puxar os transportes ou a porta do AltoStar® AM16 durante um Processamento de Configuração PCR poderá cancelar o processamento.
10.14 Conclusão do Processamento de Configuração PCR

No final do Processamento de Configuração PCR, é apresentada a caixa de diálogo *Run finished* (Processamento Concluído) (consulte a Figura 22).

![Caixa de diálogo Run finished](image)

Figura 22: Caixa de diálogo Run finished (Processamento Concluído)

1. Certifique-se de que o Tabuleiro de Carga está vazio.
2. Confirme a caixa de diálogo *Run finished* (Processamento Concluído) clicando em *Ok*.

O AltoStar® AM16 descarregará os transportes. Certifique-se de que não fica em frente aos transportes a descarregar.

Depois de descarregar é apresentada a caixa de diálogo *Maintenance* (Manutenção) (consulte a Figura 23).

Figura 23: Caixa de diálogo Maintenance (Manutenção)

A tabela da caixa de diálogo apresenta o número de reações nos Tubos Principais que não foram utilizados no Processamento de Configuração PCR.

4. Se for imediatamente iniciado um outro Processamento de Configuração PCR que utiliza a Eluate Plate (placa de eluato) atualmente carregada, a Eluate Plate (placa de eluato) pode manter-se não selada na posição do transporte. Se não for o caso, sele e armazene a Eluate Plate (placa de eluato) conforme descrito no capítulo 10.10.2 Selagem da Eluate Plate (placa de eluato).

NOTA

Após a conclusão do Processamento de Purificação, os eluatos na Eluate Plate (placa de eluato) mantêm-se estáveis à temperatura ambiente (máx. 30 °C) durante 6 horas.

5. Feche os tubos de reagente com tampas novas apropriadas.

ATENÇÃO

Não reutilize tampas de tubos para evitar a contaminação dos reagentes.
6. Armazene os reagentes para reutilização conforme descrito no capítulo 4.2 Manuseamento.

7. Elimine os materiais usados (consulte o capítulo 11 Eliminação).

8. Confirme a caixa de diálogo **Maintenance** (Manutenção) clicando em **Ok**.

10.15 Resultados do Processamento de Configuração PCR

Os resultados do Processamento de Configuração PCR são guardados no AltoStar® Connect software.

1. Clique em **PCR Setup → PCR Setup Results** (Configuração PCR → Resultados do Processamento de Configuração PCR) na barra de menus para aceder ao Results Screen (Ecrã de Resultados) (consulte a Figura 24).

Resultado de Processamento de Configuração PCR

<table>
<thead>
<tr>
<th>Samples</th>
<th>Name</th>
<th>Barcode Sample</th>
<th>Application</th>
<th>PCR Plate Well</th>
<th>PCR Plate Barcode</th>
<th>Assay Name</th>
<th>Cycler Protocol</th>
<th>Volume Sample [µL]</th>
<th>Volume Master [µL]</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>00000001</td>
<td>qualitative</td>
<td>F11</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 2</td>
<td>00000002</td>
<td>quantitative</td>
<td>G11</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 3</td>
<td>00000003</td>
<td>quantitative</td>
<td>H11</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 4</td>
<td>00000004</td>
<td>quantitative</td>
<td>A2</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 5</td>
<td>00000005</td>
<td>quantitative</td>
<td>A3</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 6</td>
<td>00000006</td>
<td>quantitative</td>
<td>C2</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 7</td>
<td>00000007</td>
<td>quantitative</td>
<td>D2</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 8</td>
<td>00000008</td>
<td>quantitative</td>
<td>E2</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 9</td>
<td>00000009</td>
<td>qualitative</td>
<td>H3</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
<tr>
<td>Sample 10</td>
<td>00000010</td>
<td>qualitative</td>
<td>A3</td>
<td>L111972</td>
<td>AltoStar alpha Herpesvirus PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
<td></td>
</tr>
</tbody>
</table>

Controles

<table>
<thead>
<tr>
<th>Name</th>
<th>Barcode Control</th>
<th>PCR Plate Well</th>
<th>PCR Plate Barcode</th>
<th>Assay Name</th>
<th>Cycler Protocol</th>
<th>Volume Sample [µL]</th>
<th>Volume Master [µL]</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTC</td>
<td>104612341564</td>
<td>A1</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
<tr>
<td>CMV QS1</td>
<td>104612341504</td>
<td>B1</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
<tr>
<td>CMV QS2</td>
<td>104612341490</td>
<td>C1</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
<tr>
<td>CMV QS3</td>
<td>104612341404</td>
<td>D1</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
<tr>
<td>CMV QS4</td>
<td>104612341390</td>
<td>E1</td>
<td>L111972</td>
<td>AltoStar CMV PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
<tr>
<td>NTC</td>
<td>102112341508</td>
<td>B2</td>
<td>L111972</td>
<td>AltoStar alpha Herpesvirus PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
<tr>
<td>Alph Herpesvirus</td>
<td>102112341508</td>
<td>C2</td>
<td>L111972</td>
<td>AltoStar alpha Herpesvirus PCR Kit 1.5</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>Processed</td>
</tr>
</tbody>
</table>

Figura 24: Results Screen (Ecrã de Resultados)
O Results Screen (Ecrã de Resultados) apresenta uma tabela com todas as amostras utilizadas no mais recente Processamento de Configuração PCR e uma coluna **Status** (Estado) à direita que indica se o processo de configuração PCR de uma determinada amostra ficou totalmente concluído (consulte a Tabela 7).

Tabela 7: Resultados do Processamento de Configuração PCR

<table>
<thead>
<tr>
<th>Estado</th>
<th>Resultado do Processamento de Configuração PCR</th>
</tr>
</thead>
</table>
| Processado | • O eluato foi processado com sucesso no Processamento de Configuração PCR.
| | • A Mistura PCR resultante está pronta para ser utilizada num Processamento PCR. |
| Erro | • O eluato não foi processado com sucesso.
| | • A respetiva Mistura PCR será automaticamente omitida na análise PCR seguinte. |

2. Para visualizar os resultados de Processamentos de Configuração PCR anteriores, clique no botão **Load** (Carregar) na barra de menus, selecione o Processamento de Configuração PCR pretendido a partir da lista na caixa de diálogo **Load Results** (Carregar Resultados) e clique em **Ok**.

São automaticamente gerados três ficheiros de resultado de Processamento de Configuração PCR pelo AltoStar® Connect software:

- Um ficheiro LIMS (.xml) para passar informações detalhadas sobre o Processamento de Configuração PCR, incluindo resultados, para o LIMS
- Um relatório (.pdf) com informações detalhadas sobre o Processamento de Configuração PCR, incluindo resultados, para efeitos de documentação
- Um ficheiro ciclador (.plrn) para a programação automática do CFX96™ DW Dx

Estes ficheiros estão guardados no local especificado em System Settings (Definições do Sistema) do AltoStar® Connect software.
Os ficheiros de resultado de Processamento de Configuração PCR podem ser novamente gerados carregando o respetivo Processamento de Configuração PCR e clicando no botão **Create LIMS File** (Criar Ficheiro LIMS), para gerar o ficheiro LIMS, ou no botão **Create Report** (Criar Relatório), para gerar o relatório, ou no botão **Create Bio-Rad Cycler File** (Criar Ficheiro Ciclador Bio-Rad) para gerar o ficheiro ciclador.

10.16 Selagem da PCR Plate (placa PCR)

Após a conclusão do Processamento de Configuração PCR, a PCR Plate (placa PCR) tem de ser selada com AltoStar® PCR Plate Sealing Foil (película de selagem da placa PCR). Recomenda-se a utilização do AltoStar® Plate Sealer (selador de placa). A adequabilidade de seladores de placa diferentes do AltoStar® Plate Sealer (selador de placa) tem de ser avaliada pelo utilizador.

Se o AltoStar® Plate Sealer (selador de placa) for utilizado para selagem, siga os seguintes passos:

1. Ligue o AltoStar® Plate Sealer (selador de placa) e certifique-se de que o adaptador de placa não está na gaveta.
2. Certifique-se de que as definições do AltoStar® Plate Sealer (selador de placa) são as seguintes: 170 °C e 2 segundos.
3. Aguarde até ser atingida a temperatura definida de 170 °C. Esta operação pode demorar vários minutos.
4. Coloque a PCR Plate (placa PCR) no adaptador de placa do AltoStar® Plate Sealer (selador de placa).
5. Coloque uma AltoStar® PCR Plate Sealing Foil (película de selagem da placa PCR) na PCR Plate (placa PCR). Alinhe o canto de corte da película de selagem com o canto de corte da PCR Plate (placa PCR). Certifique-se de que todos os poços da PCR Plate (placa PCR) estão cobertos com película. Esteja particularmente atento ao verificar se o poço no canto de corte está devidamente coberto.
NOTA

Operar o AltoStar® Plate Sealer (selador de placa) sem o adaptador de placa colocado na gaveta poderá danificar o selador. Neste caso, contacte o Apoio Técnico da altona Diagnostics para obter assistência (consulte o capítulo 14 Apoio técnico).

NOTA

Se a estrutura ou a AltoStar® PCR Plate Sealing Foil (pelicula de selagem da placa PCR) estiver incorretamente colocada, a película pode colar à placa de aquecimento no AltoStar® Plate Sealer (selador de placa) durante a selagem. Tal danificará o selador. Neste caso, deixe o AltoStar® Plate Sealer (selador de placa) arrefecer até atingir a temperatura ambiente e contacte o Apoio Técnico da altona Diagnostics para obter assistência (consulte o capítulo 14 Apoio técnico).

6. Monte a estrutura de selagem no topo para prender a película de selagem.
7. Abra a gaveta pressionando o botão Operate (Operar).
8. Coloque o conjunto constituído pelo adaptador de placa, a PCR Plate (placa PCR), a AltoStar® PCR Plate Sealing Foil (pelicula de selagem da placa PCR) e a estrutura de selagem no AltoStar® Plate Sealer (selador de placa) e pressione o botão Operate (Operar).
9. A gaveta fecha automaticamente, sela durante 2 segundos e reabre automaticamente.
10. Retire a PCR Plate (placa PCR) selada, assim como o adaptador de placa do AltoStar® Plate Sealer (selador de placa), e feche o AltoStar® Plate Sealer (selador de placa) pressionando o botão Close (Fechar).
10.17 Estabilidade da Mistura PCR
Após a conclusão do Processamento de Configuração PCR, a Mistura PCR na PCR Plate (placa PCR) selada mantém-se estável à temperatura ambiente (máx. 30 °C) durante, no máximo, 30 minutos.

ATENÇÃO
Não ultrapasse o tempo de armazenamento da Mistura PCR. Tal pode comprometer o desempenho do produto.

10.18 Iniciar um Processamento PCR
O Processamento PCR é efetuado num CFX96™ DW Dx sob o controlo do CFX Manager™ Dx software.

1. Ligue o CFX96™ DW Dx e o respetivo computador e monitor.
2. Inicie o CFX Manager™ Dx software.
3. Na barra de menus do CFX Manager™ Dx software, selecione **File → Open → LIMS File...** (Ficheiro → Abrir → Ficheiro LIMS...) para abrir a caixa de diálogo **Open LIMS File** (Abrir Ficheiro LIMS) (consulte a Figura 25).

![Figura 25: Janela do CFX Manager™ Dx software](image)
4. Ao abrir a caixa de diálogo **Open LIMS File** (Abrir Ficheiro LIMS), certifique-se de que o cursor está a piscar no campo **File name** (Nome do ficheiro) na parte inferior (consulte a Figura 26). Caso contrário, clique no campo **File name** (Nome do ficheiro).

![Figura 26: Caixa de diálogo Open LIMS File (Abrir Ficheiro LIMS)](image)

5. Digitalize o código de barras da PCR Plate (placa PCR) com o scanner de código de barras para selecionar e abrir automaticamente o ficheiro LIMS correto. É apresentada a caixa de diálogo **Run Setup** (Configuração do Processamento) (consulte a Figura 27).

NOTA

Todos os parâmetros necessários para iniciar o Processamento PCR são automaticamente transferidos do AltoStar® Connect software para o CFX96™ DW Dx através do ficheiro ciclador.
6. Clique em **Open Lid** (Abrir Tampa) para abrir a tampa do CFX96™ DW Dx (consulte a Figura 27).

![Figura 27: Caixa de diálogo Run Setup (Configuração do Processamento)](image)

7. Centrifugue brevemente a PCR Plate (placa PCR) selada para garantir que todo o líquido está no fundo dos poços.

8. Insira a PCR Plate (placa PCR) selada no bloco de aquecimento do CFX96™ DW Dx com o poço A1 para o lado esquerdo.

9. Feche o CFX96™ DW Dx clicando no botão **Close Lid** (Fechar Tampa) na caixa de diálogo **Run Setup** (Configuração do Processamento) (consulte a Figura 27).

10. Inicie o Processamento PCR clicando no botão **Start Run** (Iniciar Processamento) na caixa de diálogo **Run Setup** (Configuração do Processamento) (consulte a Figura 27).
10.19 Durante o Processamento PCR

Não é necessária a interação de utilizador até à conclusão do Processamento PCR. A caixa de diálogo **Run Details (Detalhes do Processamento)** é apresentada (consulte a Figura 28) mostrando o estado do Processamento PCR e o tempo estimado restante.

![Figura 28: Caixa de diálogo Run Details (Detalhes do Processamento)](image)

NOTA

Se abrir a tampa do CFX96™ DW Dx durante um Processamento PCR acionando o botão na frente da tampa ou clicando em **Open Lid (Abrir Tampa)** na caixa de diálogo **Run Details (Detalhes do Processamento)**, o processamento será interrompido e todos os resultados serão anulados.

No final do Processamento PCR, é apresentada a janela **Data Analysis (Análise de Dados)** (consulte a Figura 29).
10.20 Atribuição de ensaios a Well Groups (Grupos de Poços)

A AltoStar® Workflow (ordem das tarefas) processa um ou vários ensaios PCR simultaneamente numa única PCR Plate (placa PCR). Contudo, cada ensaio tem de ser analisado em separado pelo utilizador, de acordo com as instruções de utilização do respetivo ensaio.
Para este efeito, todos os ensaios numa PCR Plate (placa PCR) têm de ser atribuídos a **Well Groups** (Grupos de Poços) individuais no CFX Manager™ Dx software pelo utilizador.

1. Na janela **Data Analysis** (Análise de Dados) (consulte a Figura 29), clique no botão **Plate Setup** (Configuração da Placa) na barra de ferramentas e selecione **View/Edit Plate** (Ver/Editar Placa). É apresentada a caixa de diálogo **Plate Editor** (Editor de Placas) (consulte a Figura 30).

![Figura 30: Caixa de diálogo Plate Editor (Editor de Placas)](image)

2. Na caixa de diálogo **Plate Editor** (Editor de Placas) clique em **Well Groups...** (Grupos de Poços...) na barra de ferramentas. É apresentada a caixa de diálogo **Well Groups Manager** (Gestor de Grupos de Poços) (consulte a Figura 31).
3. Clique no botão **Add** (Adicionar).
4. Digite o nome do primeiro ensaio na caixa de texto.
5. Selecione todos os poços na área da placa PCR que pertencem ao primeiro ensaio (consulte a Figura 31). Os poços que pertencem a um ensaio individual podem ser identificados na caixa de diálogo **Plate Editor** (Editor de Placas) através da entrada no campo **Biological Set** (Conjunto Biológico).

![Figura 31: Caixa de diálogo Well Groups Manager (Gestor de Grupos de Poços)](image)

6. Repita os passos de 3 a 5 para todos os ensaios na PCR Plate (placa PCR).
7. Confirme a atribuição do Well Group (Grupo de Poços) clicando em **OK**. A caixa de diálogo **Well Groups Manager** (Gestor de Grupos de Poços) fecha-se.
8. Feche a caixa de diálogo **Plate Editor** (Editor de Placas) clicando em **OK**.

9. Confirme para aplicar as alterações clicando em **Yes** (Sim) (consulte a Figura 32).

![Figura 32: Caixa de diálogo Confirmation (Confirmação)](image)
10.21 Análise de dados PCR
Os resultados de todos os ensaios (Well Groups (Grupos de Poços)) na PCR Plate (placa PCR) têm de ser analisados de acordo com a sequência ilustrada na Figura 33.

Figura 33: Processo de Análise de Dados PCR
Na janela **Data Analysis** (Análise de Dados) (consulte a Figura 29), certifique-se de que seleciona o **Well Group** (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente **Well Group** (Grupo de Poços) junto do botão **Well Group** (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas. Não utilize o **Well Group** (Grupo de Poços) **All Wells** (Todos os Poços).

Antes de analisar os resultados, certifique-se de que o **Well Group** (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5 contém todos os poços do kit AltoStar® CMV PCR Kit 1.5 e não contém poços de outros ensaios.

Figura 34: Botão Well Group (Grupo de Poços) e menu pendente Well Group (Grupo de Poços)

NOTA

A análise combinada de mais de um ensaio poderá conduzir a resultados incorretos.

ATENÇÃO

À semelhança de qualquer outro teste de diagnóstico, os resultados devem ser interpretados tendo em consideração todos os dados clínicos e laboratoriais.
10.21.1 Correção da linha de base

As definições da linha de base utilizadas pelo CFX Manager™ Dx software podem ter de ser corrigidas para poços individuais do ensaio [Well Group (Grupo de Poços)] sob análise.

1. Na janela Data Analysis (Análise de Dados) (consulte a Figura 29), certifique-se de que seleciona o Well Group (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente Well Group (Grupo de Poços) junto do botão Well Group (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas.

2. Do lado esquerdo da janela Data Analysis (Análise de Dados), assinale apenas a caixa de verificação FAM para o canal de deteção-alvo do CMV (consulte a Figura 29).

3. Na barra de menus da janela Data Analysis (Análise de Dados), clique em Settings → Baseline Threshold… (Definições → Limiar da Linha de Base…) para abrir a caixa de diálogo Baseline Threshold (Limiar da Linha de Base) (consulte a Figura 35).

4. Clique uma vez no símbolo ◊ no cabeçalho da coluna Baseline End (Fim da Linha de Base) para ordenar a tabela por valores Baseline End (Fim da Linha de Base) ascendentes.

5. Selecione todas as linhas que apresentam um valor Baseline End (Fim da Linha de Base) de 1 a 9 (consulte a Figura 35).
Figura 35: Caixa de diálogo Baseline Threshold (Limiar da Linha de Base)

6. Defina o valor no campo **End**: (Fim:) para 45 para as linhas selecionadas (consulte a Figura 35).

7. Confirme as definições clicando em **OK**.

8. Do lado esquerdo da janela **Data Analysis** (Análise de Dados), anule a seleção da caixa de verificação **FAM** e selecione apenas a caixa de verificação **VIC** para o canal de deteção-alvo de Internal Control (controlo interno).

9. Repita os passos de 3 a 7 para o canal de deteção **VIC™** [Internal Control (controlo interno)].
10.21.2 Exclusão de sinais irregulares PCR

Os resultados válidos só podem ser derivados de sinais PCR que não apresentem artefactos nos sinais que poderão ser causados, por ex., por impurezas ou bolhas na Mistura PCR. Os sinais PCR que contêm artefactos nos sinais têm de ser excluídos pelo utilizador.

1. Na janela Data Analysis (Análise de Dados) (consulte a Figura 29), certifique-se de que seleciona o **Well Group** (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente **Well Group** (Grupo de Poços) junto do botão **Well Group** (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas.

2. Identifique os poços com sinais PCR irregulares (aumento de sinal linear, picos de sinal, etc.) em qualquer um dos canais de deteção FAM™ (alvo de CMV) e VIC™ [Internal Control (controlo interno)] (consulte a Figura 36).
Figura 36: Janela Data Analysis (Análise de Dados): Sinal PCR Irregular
3. Com o botão direito do rato, clique em cada poço afetado e selecione **Well... → Exclude from Analysis** (Poço... → Excluir da Análise) (consulte a Figura 37).

Figura 37: Janela Data Analysis (Análise de Dados): Excluir Poço da Análise

Figura 38: Janela Data Analysis (Análise de Dados): Poço excluído
10.21.3 Definição de limiares

Os limiares para os canais de detecção FAM™ (alvo de CMV) e VIC™ [Internal Control (controlo interno)] têm de ser definidos manualmente pelo utilizador de acordo com os sinais dos controlos.

1. Na janela Data Analysis (Análise de Dados) (consulte a Figura 29), certifique-se de que seleciona o Well Group (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente Well Group (Grupo de Poços) junto do botão Well Group (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas.

2. Do lado esquerdo da janela Data Analysis (Análise de Dados), assinale apenas a caixa de verificação VIC para o canal de detecção do Internal Control (controlo interno) (consulte a Figura 39).

4. Arraste o limiar para a área exponencial do sinal NTC (consulte a Figura 39).
NOTA

O NTC contém o Modelo Internal Control (controlo interno) que conduz a um sinal de Internal Control (controlo interno) num poço NTC válido.

5. Do lado esquerdo da janela **Data Analysis** (Análise de Dados), anule a seleção da caixa de verificação **VIC** e assinale a caixa de verificação **FAM** para o canal de deteção do alvo de CMV (consulte a Figura 40).

![Figura 40: Janela Data Analysis (Análise de Dados): Definição do limiar FAM™](image-url)
6. Selecione apenas os poços que contêm NTC e os Padrões de Quantificação ou Controlo Positivo na vista da placa da janela **Data Analysis** (Análise de Dados) (consulte a Figura 40).

7. Arraste o limiar acima do sinal de NTC para a área exponencial dos sinais Padrões de Quantificação ou Controlo Positivo.

10.21.4 Exclusão de poços com dados inválidos

Os poços que não contêm dados válidos têm de ser excluídos da geração de resultados pelo utilizador.

1. Na janela Data Analysis (Análise de Dados) (consulte a Figura 29), certifique-se de que selecciona o **Well Group** (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente **Well Group** (Grupo de Poços) junto do botão **Well Group** (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas.

2. Identifique todos os poços que contêm dados inválidos. Um poço é considerado inválido caso se aplique qualquer uma das seguintes condições:

 a) O processamento completo é inválido [consulte o capítulo 10.21.4.1 Validade de um Processamento PCR de Diagnóstico (qualitativo) e o capítulo 10.21.4.2 Validade de um Processamento PCR de Diagnóstico (quantitativo)].

 b) Os dados do poço não cumprem as condições de controlo para um resultado válido (consulte o capítulo 10.21.4.3 Validade dos resultados para uma amostra).

3. Com o botão direito do rato, clique em cada poço que contém dados inválidos de acordo com os capítulos 10.21.4.1 Validade de um Processamento PCR de Diagnóstico (qualitativo) a 10.21.4.3 Validade dos resultados para uma amostra e selecione **Well... → Exclude from Analysis** (Poço... → Excluir da Análise) (consulte a Figura 41 e a Figura 42).
Figura 41: Janela Data Analysis (Análise de Dados): Poço Inválido
Figura 42: Janela Data Analysis (Análise de Dados): Excluir Poço inválido da Análise
O poço selecionado é excluído da análise. Não serão gerados resultados para este poço (consulte a Figura 43).

Figura 43: Janela Data Analysis (Análise de Dados): Poço Excluído
10.21.4.1 Validação de um Processamento PCR de Diagnóstico (qualitativo)

Um Processamento PCR de diagnóstico qualitativo é considerado **válido** se as seguintes condições de controlo forem cumpridas:

Tabela 8: Condições de controlo para um Processamento PCR válido (qualitativo)

<table>
<thead>
<tr>
<th>Controlo</th>
<th>Canal de deteção</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAM™ (alvo de CMV)</td>
</tr>
<tr>
<td></td>
<td>VIC™ [Internal Control (controlo interno)]</td>
</tr>
<tr>
<td>Padrão de Quantificação (Padrão/Positivo)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>não aplicável</td>
</tr>
<tr>
<td>NTC</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Um Processamento PCR de diagnóstico qualitativo é **inválido** se:

- o processamento não tiver sido concluído
- qualquer uma das condições de controlo para um Processamento PCR de diagnóstico qualitativo válido não for cumprida.

No caso de um Processamento PCR de diagnóstico inválido, exclua todos os poços da análise e repita o AltoStar® Run (processamento) a partir das amostras originais.

10.21.4.2 Validação de um Processamento PCR de Diagnóstico (quantitativo)

Um Processamento PCR de diagnóstico quantitativo é considerado **válido** se as seguintes condições forem cumpridas:

- Todas as condições de controlo para um Processamento PCR de diagnóstico qualitativo válido são cumpridas [consulte o capítulo 10.21.4.1 Validação de um Processamento PCR de Diagnóstico (qualitativo)].
- A curva padrão gerada atinge o seguinte valor de parâmetro de controlo:
Tabela 9: Parâmetro de controlo da curva padrão

<table>
<thead>
<tr>
<th>Parâmetro de controlo</th>
<th>Valor válido</th>
</tr>
</thead>
<tbody>
<tr>
<td>R quadrado (R^2)</td>
<td>$\geq 0,98$</td>
</tr>
</tbody>
</table>

O parâmetro de controlo da curva padrão é apresentado abaixo do gráfico **Standard Curve** (Curva Padrão) na janela **Data Analysis** (Análise de Dados) (consulte a Figura 44).

![Curva Padrão](image)

Figura 44: Dados da curva padrão

Um Processamento PCR de diagnóstico quantitativo é **inválido** se:

- o processamento não tiver sido concluído
- qualquer uma das condições de controlo para um Processamento PCR de diagnóstico quantitativo válido não for cumprida.

No caso de um Processamento PCR de diagnóstico inválido, exclua todos os poços da análise e repita o AltoStar® Run (processamento) a partir das amostras originais.

111
10.21.4.3 Validez dos resultados para uma amostra
O resultado para uma amostra individual é **inválido** se os sinais em ambos os canais de deteção VIC™ [Internal Control (controlo interno)] e FAM™ (alvo de CMV) forem negativos (consulte a Tabela 10). No caso de um resultado inválido para uma amostra, exclua o poço da análise e repita o teste a partir da amostra original ou recolha e teste uma nova amostra.

Tabela 10: Validez do resultado

<table>
<thead>
<tr>
<th>Canal de deteção</th>
<th>Validez do resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™ (alvo de CMV)</td>
<td>VIC™ [Internal Control (controlo interno)]</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* A deteção do Internal Control (controlo interno) não é necessária quando o alvo de CMV é detetado. Uma carga elevada de ADN do CMV na amostra pode causar a redução ou ausência do sinal de Internal Control (controlo interno).

10.21.5 Exportação de resultados PCR para a interpretação automatizada de resultados
Para tornar os resultados do Processamento PCR disponíveis para um LIMS ligado para efeitos de interpretação de resultado automatizada, é necessário exportá-los sob a forma de um Ficheiro de Resultado LIMS (.csv).

1. Na janela Data Analysis (Análise de Dados) (consulte a Figura 29), certifique-se de que selecciona o **Well Group** (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente **Well Group** (Grupo de Poços) junto do botão **Well Group** (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas.

2. Certifique-se de que todos os passos do processo de análise (consulte os capítulos 10.21.1 Correção da linha de base a 10.21.4 Exclusão de poços com dados inválidos) foram concluídos para o **Well Group** (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5.
3. Na barra de menus da janela **Data Analysis** (Análise de Dados), clique em **Export → Export All Data Sheets** (Exportar → Exportar Todas as Folhas de Dados) para abrir a caixa de diálogo **Browse For Folder** (Procurar Pasta) (consulte a Figura 45).

![Browse For Folder](image)

Figura 45: Caixa de diálogo Browse For Folder (Procurar Pasta)

4. Na caixa de diálogo **Browse For Folder** (Procurar Pasta), especifique a localização dos Ficheiros de Resultado LIMS a serem gerados e clique em **OK**.

NOTA

A Integração LIMS tem de ser implementada de acordo com as especificações da altona Diagnostics. Para mais informações relativas à Integração LIMS, contacte o Apoio Técnico da altona Diagnostics (consulte o capítulo 14 Apoio técnico).
NOTA

Guardar os resultados de mais de um ensaio [Well Group (Grupo de Poços)] de um Processamento PCR na mesma pasta leva à substituição dos Ficheiros de Resultado LIMS do primeiro ensaio [Well Group (Grupo de Poços)] pelos Ficheiros de Resultado LIMS do segundo ensaio [(Well Group (Grupo de Poços)]. Neste caso, os Ficheiros de Resultado LIMS do primeiro ensaio [Well Group (Grupo de Poços)] podem ser exportados novamente.

10.21.6 Exportação de resultados PCR para a interpretação manual de resultados

Se os resultados não forem passados para um LIMS para uma interpretação automática de resultados, a interpretação de resultados tem de ser realizada manualmente pelo utilizador. Para este efeito, é necessário exportar os resultados de análise de cada ensaio [Well Group (Grupo de Poços)] sob a forma de um Report (Relatório).

1. Na janela Data Analysis (Análise de Dados) (consulte a Figura 29), certifique-se de que seleciona o Well Group (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5. Por conseguinte, clique no menu pendente Well Group (Grupo de Poços) junto do botão Well Group (Grupo de Poços) (consulte a Figura 34) da barra de ferramentas.

2. Do lado esquerdo da janela Data Analysis (Análise de Dados), selecione a caixa de verificação VIC e a caixa de verificação FAM.

3. Certifique-se de que todos os passos do processo de análise (consulte os capítulos 10.21.1 Correção da linha de base a 10.21.4 Exclusão de poços com dados inválidos) foram concluídos para o Well Group (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5.

4. Na barra de menus da janela Data Analysis (Análise de Dados) clique em Tools → Reports... (Ferramentas → Relatórios...) para abrir a caixa de diálogo Report (Relatório) (consulte a Figura 46).
Figura 46: Caixa de diálogo Report (Relatório): Exportação dos resultados sob a forma de Relatório

5. Certifique-se de que pelo menos o seguinte conteúdo é selecionado para a geração de relatório na parte superior esquerda da caixa de diálogo Report (Relatório) (consulte a Figura 47):
Figura 47: Caixa de diálogo Report (Relatório)

Selecionoe ou anule a seleção de conteúdo adicional do Report (Relatório) assinalando as respetivas caixas de verificação, conforme necessário.

6. Na barra de menus da caixa de diálogo Report (Relatório), clique em File → Save As... (Ficheiro → Guardar Como...) para abrir a caixa de diálogo Save Report (Guardar Relatório).

7. Na caixa de diálogo Save Report (Guardar Relatório), especifique o nome e a localização do ficheiro de relatório a ser gerado e clique em Save (Guardar).

10.21.6.1 Interpretação manual dos resultados

1. Abra o ficheiro Report (Relatório) gerado para o Well Group (Grupo de Poços) do kit AltoStar® CMV PCR Kit 1.5 (consulte o capítulo 10.21.6 Exportação de resultados PCR para a interpretação manual de resultados).

2. Consulte a tabela Quantification Data (Dados de Quantificação) no Report (Relatório) (consulte a Figura 48). A tabela é composta por duas linhas para cada Sample (Amostra) - uma para o Target (Alvo) CMV e uma para o Target (Alvo) Internal Control (controlo interno).
Figura 48: Report (Relatório): Quantification Data (Dados de Quantificação)

Os resultados qualitativos estariam assinalados com o termo *qualitative* (*qualitativo*) na coluna *Well Note* (Nota do Poço) da tabela *Quantification Data* (Dados de Quantificação).

3. Nesse caso, identifique cada linha com o *Target* (Alvo) *CMV* e, em seguida, o termo *qualitative* (*qualitativo*) na coluna *Well Note* (Nota do Poço).

4. Nestas linhas, consulte a coluna *Cq* para o resultado da respectiva *Sample* (Amostra).

5. Consulte a Tabela 11 para a interpretação de resultados qualitativos.

Os resultados quantitativos estão assinalados por um *Concentration factor* (*Fator de concentração*) na coluna *Well Note* (Nota do Poço) da tabela *Quantification Data* (Dados de Quantificação) (consulte a Figura 48).

6. Identifique cada linha com o *Target* (Alvo) *CMV* e um *Concentration factor* (*Fator de concentração*) na coluna *Well Note* (Nota do Poço).
7. Nestas linhas, consulte a coluna **Starting Quantity (SQ)** (Quantidade Inicial) para a concentração do alvo de CMV medida no eluato da respetiva **Sample** (Amostra). Para calcular o resultado da amostra original do paciente, o valor da **Starting Quantity (SQ)** (Quantidade Inicial) tem de ser multiplicado pelo respetivo **Fator de concentração** (incluindo a unidade) pelo utilizador.

8. Consulte a Tabela 12 para a interpretação de resultados quantitativos.

Tabela 11: Resultados Qualitativos: Interpretação de resultados

<table>
<thead>
<tr>
<th>Ciclo Limiar (C<sub>a</sub>) do alvo de CMV</th>
<th>Interpretação de resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 45</td>
<td>ADN específico do CMV detetado.</td>
</tr>
<tr>
<td>N/A</td>
<td>Nenhum ADN específico do CMV detetado. A amostra não contém quantidades detetáveis de ADN específico do CMV.</td>
</tr>
</tbody>
</table>

Tabela 12: Resultados Quantitativos: Interpretação de resultados

<table>
<thead>
<tr>
<th>Quantidade Inicial (SQ) do alvo de CMV</th>
<th>Interpretação de resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0</td>
<td>ADN específico do CMV detetado. Multiplique o valor da Starting Quantity (SQ) (Quantidade Inicial) pelo Concentration factor (Fator de concentração) na coluna Well Note (Nota do Poço) (incluindo a unidade) para calcular a concentração da amostra original do paciente.</td>
</tr>
<tr>
<td>N/A</td>
<td>Nenhum ADN específico do CMV detetado. A amostra não contém quantidades detetáveis de ADN específico do CMV.</td>
</tr>
</tbody>
</table>
11. Eliminação

Elimine os resíduos perigosos e biológicos em conformidade com os regulamentos nacionais e locais. Os resíduos e os componentes excedentes não devem entrar em contacto com redes de esgoto, cursos de água ou o solo.

ATENÇÃO

As amostras devem ser sempre tratadas como sendo infecciosas e com risco (biológico), em conformidade com os procedimentos laboratoriais de segurança. No caso de derrames de material da amostra, utilize imediatamente um desinfetante apropriado. Manuseie os materiais contaminados como se se tratasse de materiais com risco biológico.

ATENÇÃO

Elimine os resíduos perigosos e biológicos unicamente em conformidade com os regulamentos nacionais e locais para evitar a contaminação ambiental.

NOTA

Os resíduos líquidos e quaisquer líquidos que contenham Lysis Buffer (tampão de lise) ou Wash Buffer (tampão de lavagem) 1 contêm tiocianato de guanidina, podendo formar compostos tóxicos, altamente reativos e voláteis quando combinados com lixívia ou ácidos fortes.

NOTA

A PCR Plate (placa PCR) tem de ser eliminada selada, uma vez que a AltoStar® PCR Plate Sealing Foil (película de selagem da placa PCR) não pode ser removida.
12. Avaliação do desempenho

A avaliação do desempenho do kit AltoStar® CMV PCR Kit 1.5 foi efetuada segundo a 1.ª Norma Internacional da OMS para o citomegalovírus humano para as Técnicas Baseadas na Amplificação de Ácidos Nucleicos (NIBSC, código: 09/162) e o material padrão do CMV calibrado face à Norma Internacional da OMS.

12.1 Plasma

12.1.1 Sensibilidade analítica

Para determinação do limite de deteção (LDD), foi gerada uma série de diluições da 1.ª Norma Internacional da OMS para o citomegalovírus humano para as Técnicas Baseadas na Amplificação de Ácidos Nucleicos (NIBSC, código: 09/162) no plasma entre 1 000 e 10 UI/ml.

Cada diluição foi testada em 8 réplicas em 3 dias diferentes (total n = 24 por diluição) utilizando combinações de 3 lotes de kit AltoStar® CMV PCR Kit 1.5, 3 lotes de kit AltoStar® Purification Kit 1.5 e 3 lotes de AltoStar® Internal Control 1.5 (controlo interno). Foram efetuados processamentos utilizando 3 AltoStar® Automation System AM16 (sistema de automação) e CFX96™ DW Dx diferentes.

Os dados de todos os processamentos foram combinados e foi realizada uma análise de probit para determinar o valor do LDD de 95 %.
Tabela 13: Resultados PCR utilizados para calcular a sensibilidade analítica do kit AltoStar® CMV PCR Kit 1.5

<table>
<thead>
<tr>
<th>Concentração [UI/ml]</th>
<th>N [total]</th>
<th>N [positivo]</th>
<th>Taxa de positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>24</td>
<td>23</td>
<td>95,8</td>
</tr>
<tr>
<td>200</td>
<td>24</td>
<td>23</td>
<td>95,8</td>
</tr>
<tr>
<td>150</td>
<td>24</td>
<td>23</td>
<td>95,8</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>16</td>
<td>66,7</td>
</tr>
<tr>
<td>50</td>
<td>24</td>
<td>10</td>
<td>41,7</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>4</td>
<td>16,7</td>
</tr>
</tbody>
</table>

O limite de deteção do kit AltoStar® CMV PCR Kit 1.5 para a deteção de CMV no plasma é de 215 UI/ml (intervalo de confiança de 95 %: 163 - 330 UI/ml).

12.1.2 Especificidade analítica

A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 é garantida pela seleção meticulosa dos oligonucleotídeos (primers e sondas). Os oligonucleotídeos foram verificados por análise de comparação das sequências com sequências publicamente disponíveis, para garantir que todos os genótipos de CMV relevantes serão detetados.

Para verificação da especificidade analítica do kit AltoStar® CMV PCR Kit 1.5, foram realizados os seguintes ensaios (consulte os capítulos 12.1.2.1 Amostras negativas até 12.1.2.3 Reatividade cruzada):
12.1.2.1 Amostras negativas
Foram testadas 35 amostras de plasma negativo de CMV de dadores individuais com o kit AltoStar® CMV PCR Kit 1.5. Todas as amostras testadas (35 de 35) mostraram resultados negativos para o ADN específico do CMV e positivos para o Internal Control (controlo interno). A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 para amostras de plasma é ≥ 95%.

12.1.2.2 Substâncias interferentes
Para avaliar a influência de substâncias endógenas e exógenas potencialmente interferentes no desempenho do kit AltoStar® CMV PCR Kit 1.5, foram potenciadas substâncias selecionadas em amostras de plasma com CMV numa concentração de 3 x LDD (645 UI/ml), de 10 000 UI/ml e sem CMV, respectivamente.

Os resultados obtidos de amostras com substâncias potencialmente interferentes foram comparados com os resultados gerados de amostras de plasma sem interferente adicionado. Cada amostra foi processada em 3 réplicas. Não foi observada nenhuma interferência nas amostras contendo níveis elevados de substâncias endógenas (bilirrubina, hemoglobina, triglicéridos, albumina do soro humano e ADN genómico humano) ou exógenas (Ganciclovir, Foscarinet, Azatioprina e Ciclosporina).

ATENÇÃO
A presença de inibidores de PCR (por ex., heparina) poderá causar resultados inválidos ou falsos negativos.

12.1.2.3 Reatividade cruzada
A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 no que respeita à reatividade cruzada com outros agentes patogénicos que não o CMV foi avaliada através do teste de vírus relacionados com o CMV, vírus que provocam sintomas semelhantes, como uma infeção com CMV, e vírus com a probabilidade de estarem presentes em pacientes com uma infeção de CMV.
O kit AltoStar® CMV PCR Kit 1.5 não reagiu com qualquer um dos seguintes agentes patogénicos:

- Vírus Herpes Simplex 1 (HSV-1)
- Vírus Herpes Simplex 2 (HSV-2)
- Vírus Varicella-Zoster (VZV)
- Vírus Epstein-Barr (EBV)
- Herpesvírus humano 6A (HHV-6A)
- Herpesvírus humano 6B (HHV-6B)
- Adenovírus (ADV) subtipo 14
- Parvovírus B19
- Vírus BK (BKV)
- Vírus JC (JCV)
- Vírus da Hepatite A (HAV)
- Vírus da Hepatite B (HBV)
- Vírus da Hepatite C (HCV)
- Vírus da imunodeficiência humana 1 (HIV-1)

ATENÇÃO

No caso de a amostra conter outros agentes patogénicos que não o CMV, poderá haver concorrência com a amplificação alvo ou reatividades cruzadas.

12.1.3 Intervalo linear

Para a determinação do intervalo linear do kit AltoStar® CMV PCR Kit 1.5 foi testada uma série de diluições do CMV em plasma entre 100 000 000 e 200 UI/ml. Foram testadas diluições com uma concentração entre 100 000 000 e 1 000 000 UI/ml em 4 réplicas e foram testadas diluições com uma concentração entre 100 000 e 200 UI/ml em 8 réplicas. Foi efetuada uma análise com base numa regressão polinomial.

O intervalo linear do kit AltoStar® CMV PCR Kit 1.5 para a quantificação de CMV no plasma é de 250 - 100 000 000 UI/ml. É apresentada uma representação gráfica dos dados na Figura 49.
LOG10 da Concentração Estimada vs. LOG10 da Concentração Nominal AltoStar® CMV PCR Kit 1.5

Figura 49: Análise de regressão linear do kit AltoStar® CMV PCR Kit 1.5 com amostras de plasma

12.1.4 Precisão

A precisão do kit AltoStar® CMV PCR Kit 1.5 foi avaliada utilizando um painel constituído por uma amostra de CMV muito positiva (10 000 UI/ml), uma amostra de CMV pouco positiva [1 250 UI/ml (5 x limite inferior de quantificação (LLoQ))] e uma amostra de plasma negativo de CMV. Foram realizados 5 processamentos com diferentes combinações de 3 lotes de kit AltoStar® CMV PCR Kit 1.5, 3 lotes de kit AltoStar® Purification Kit 1.5 e 3 lotes de AltoStar® Internal Control 1.5 (controlo interno). Os processamentos foram efetuados em 5 dias diferentes utilizando 3 AltoStar® Automation System AM16 (sistema de automação) diferentes e 3 CFX96™ DW Dx. Cada componente do painel foi testado em pelo menos 4 réplicas por processamento.
Foram determinadas a repetibilidade (variabilidade intraprocessamento), a variabilidade entre lotes e a reprodutibilidade (variabilidade total) com base em valores de quantificação para as amostras muito e pouco positivas de CMV (consulte a Tabela 14) e nos valores do ciclo limiar (C_q) para o Internal Control (controlo interno) nas amostras negativas de CMV (consulte a Tabela 15).

Tabela 14: Dados de precisão (CV% dados de quantificação em log10) para amostras de plasma muito e pouco positivas de CMV

<table>
<thead>
<tr>
<th></th>
<th>Amostra muito positiva de CMV (10 000 UI/ml)</th>
<th>Amostra pouco positiva de CMV (1 250 UI/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraprocessamento</td>
<td>0,84 - 2,29</td>
<td>2,57 - 4,57</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>2,65</td>
<td>4,64</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td>2,41</td>
<td>4,19</td>
</tr>
</tbody>
</table>

Tabela 15: Dados de precisão (CV% valores C_q) para o Internal Control (controlo interno) nas amostras de plasma negativo de CMV

<table>
<thead>
<tr>
<th></th>
<th>Internal Control (controlo interno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade</td>
<td></td>
</tr>
<tr>
<td>Intraprocessamento</td>
<td>0,12 - 0,37</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>0,22</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td>0,42</td>
</tr>
</tbody>
</table>

12.1.5 Taxa de insucesso total

A solidez do kit AltoStar[®] CMV PCR Kit 1.5 foi avaliada através do teste de 30 amostras de plasma negativo de CMV, de dadores individuais, potenciadas com CMV para uma concentração final de 3 x LDD (645 UI/ml). Todas as amostras testadas (30 de 30) mostraram resultados positivos no canal de deteção por fluorescência específico do CMV (FAM™).
12.1.6 Transferência
A transferência é essencialmente um risco dependente da ordem das tarefas e independente do ensaio PCR utilizado. Para a AltoStar® Workflow (ordem das tarefas), utilizou-se o kit AltoStar® Parvovirus B19 PCR Kit 1.5 como modelo exemplar. A potencial contaminação cruzada através de transferência de amostras muito positivas foi avaliada testando alternativamente amostras muito positivas do parvovírus B19 (1,00E+07 UI/ml) e amostras negativas (n = 44 cada por processamento; 2 processamentos) com o kit AltoStar® Parvovirus B19 PCR Kit 1.5. Não foi observada transferência (ou seja, todas as amostras negativas do parvovírus B19 tiveram um resultado negativo).

12.1.7 Avaliação de diagnóstico
O kit AltoStar® CMV PCR Kit 1.5 foi avaliado num estudo comparativo com o kPCR PLX® Cytomegalovirus (CMV) DNA Assay com marcação CE. Foram testadas retrospectivamente em paralelo 142 amostras de plasma, retiradas de um controlo de rotina do CMV, utilizando o kPCR PLX® Cytomegalovirus (CMV) DNA Assay em combinação com o VERSANT® kPCR Molecular System (Siemens) e utilizando o kit AltoStar® CMV PCR Kit 1.5 em combinação com o kit AltoStar® Purification Kit 1.5 e o AltoStar® Internal Control 1.5 (controlo interno) no AltoStar® Automation System AM16 (sistema de automação) e no CFX96™ DW Dx. Para a análise qualitativa, foram excluídas todas as amostras com um resultado inválido para um ou ambos os ensaios, assim como amostras com um resultado quantitativo inferior ao limite de detecção de um ou ambos os ensaios. Os resultados das 125 amostras restantes são apresentados na Tabela 16.
Tabela 16: Resultados da avaliação da sensibilidade e da especificidade de diagnóstico das amostras de plasma

<table>
<thead>
<tr>
<th></th>
<th>kPCR PLX® Cytomegalovirus (CMV) DNA Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>AltoStar® CMV PCR Kit 1.5</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

A sensibilidade e a especificidade de diagnóstico do kit AltoStar® CMV PCR Kit 1.5 em comparação com o kPCR PLX® Cytomegalovirus (CMV) DNA Assay foi de 100 %, respectivamente.

No que respeita à correlação quantitativa, foram excluídas as amostras com resultado negativo num ou em ambos os ensaios, assim como as amostras com um resultado quantitativo abaixo do limite inferior de quantificação de um ou ambos os ensaios. Os resultados das 77 amostras restantes foram utilizados para a correlação quantitativa por análise de regressão linear (consulte a Figura 50).
Verificou-se uma correlação bastante boa entre os resultados quantitativos obtidos com o kit AltoStar® CMV PCR Kit 1.5 e o kPCR PLX® Cytomegalovirus (CMV) DNA Assay [coeficiente de correlação $R = 0,95$ ($R^2 = 0,89$)].

12.2 Sangue Total

12.2.1 Sensibilidade analítica

Para determinação do limite de detecção (LDD), foi gerada uma série de diluições da 1.ª Norma Internacional da OMS para o citomegalovírus humano para as Técnicas Baseadas na Amplificação de Ácidos Nucleicos (NIBSC, código: 09/162) no sangue total entre 10 000 e 10 UI/ml. Cada diluição foi testada em 8 réplicas em 3 dias diferentes (total $n = 24$ por diluição) utilizando combinações de 3 lotes de kit AltoStar® CMV PCR Kit 1.5, 3 lotes de kit AltoStar® Purification Kit 1.5 e 3 lotes de AltoStar® Internal Control 1.5 (controlo interno). Foram efetuados processamentos utilizando 3 AltoStar® Automation System AM16 (sistema de automação) e CFX96™ DW Dx diferentes.

Os dados de todos os processamentos foram combinados e foi realizada uma análise de probit para determinar o valor do LDD de 95%.
Tabela 17: Resultados PCR utilizados para calcular a sensibilidade analítica do kit AltoStar® CMV PCR Kit 1.5

<table>
<thead>
<tr>
<th>Concentração [UI/ml]</th>
<th>N [total]</th>
<th>N [positivo]</th>
<th>Taxa de positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1 000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>750</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>350</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>24</td>
<td>21</td>
<td>87,5</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>17</td>
<td>70,8</td>
</tr>
<tr>
<td>50</td>
<td>24</td>
<td>5</td>
<td>20,8</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>2</td>
<td>8,3</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>3</td>
<td>12,5</td>
</tr>
</tbody>
</table>

O limite de detecção do kit AltoStar® CMV PCR Kit 1.5 para a detecção de CMV no sangue total é de 305 UI/ml (intervalo de confiança de 95 %: 218 - 495 UI/ml).

12.2.2 Especificidade analítica

A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 é garantida pela seleção meticulosa dos oligonucleotídeos (primers e sondas). Os oligonucleotídeos foram verificados por análise de comparação das sequências com sequências publicamente disponíveis, para garantir que todos os genótipos de CMV relevantes serão detetados.

Para verificação da especificidade analítica do kit AltoStar® CMV PCR Kit 1.5, foram realizados os seguintes ensaios (consulte os capítulos 12.2.2.1 Amostras negativas até 12.2.2.3 Reatividade cruzada):
12.2.2.1 Amostras negativas

Foram testadas 31 amostras de sangue total negativas de CMV de doadores individuais com o kit AltoStar® CMV PCR Kit 1.5. Todas as amostras testadas (31 de 31) mostraram resultados negativos para o ADN específico do CMV e positivos para o Internal Control (controlo interno). A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 para amostras de sangue total é ≥ 95 %.

12.2.2.2 Substâncias interferentes

Para avaliar a influência de substâncias endógenas e exógenas potencialmente interferentes no desempenho do kit AltoStar® CMV PCR Kit 1.5, foram potenciadas substâncias selecionadas em amostras de sangue total com CMV numa concentração de 3 x LDD (915 UI/ml) e 10 000 UI/ml e sem CMV, respectivamente.

Os resultados obtidos de amostras com substâncias potencialmente interferentes foram comparados com os resultados gerados de amostras de sangue total sem interferente adicionado. Cada amostra foi processada em 3 réplicas. Não foi observada nenhuma interferência nas amostras contendo níveis elevados de substâncias endógenas (bilirrubina, hemoglobina, triglicéridos, albumina do soro humano e ADN genómico humano) ou exógenas (Ganciclovir, Foscarnet, Azatioprina e Ciclosporina).

ATENÇÃO

A presença de inibidores de PCR (por ex., heparina) poderá causar resultados inválidos ou falsos negativos.

12.2.2.3 Reatividade cruzada

A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 no que respeita à reatividade cruzada com outros agentes patogénicos que não o CMV foi avaliada através do teste de vírus relacionados com o CMV, virus que provocam sintomas semelhantes, como uma infeção com CMV ou agentes patogénicos com a probabilidade de estarem presentes em pacientes com uma infeção de CMV (consulte o capítulo 12.1.2.3 Reatividade cruzada).
12.2.3 Intervalo linear

Para a determinação do intervalo linear do kit AltoStar® CMV PCR Kit 1.5 foi testada uma série de diluições do CMV em sangue total entre 100 000 000 e 500 UI/ml. Foram testadas diluições com uma concentração entre 100 000 000 e 1 000 000 UI/ml em 4 réplicas e foram testadas diluições com uma concentração entre 100 000 e 500 UI/ml em 8 réplicas. Foi efetuada uma análise com base numa regressão polinomial.

O intervalo linear do kit AltoStar® CMV PCR Kit 1.5 para a quantificação de CMV no sangue total é de 500 - 100 000 000 UI/ml. É apresentada uma representação gráfica dos dados na Figura 51.

LOG10 da Concentração Estimada vs. LOG10 da Concentração Nominal AltoStar® CMV PCR Kit 1.5

![Gráfico](image)

Centração Estimada [log10 UI/ml]
Centração Nominal [log10 UI/ml]

Figura 51: Análise de regressão linear do kit AltoStar® CMV PCR Kit 1.5 com amostras de sangue total
12.2.4 Precisão

A precisão do kit AltoStar® CMV PCR Kit 1.5 foi avaliada utilizando um painel constituído por uma amostra de CMV muito positiva (10 000 UI/ml), uma amostra de CMV pouco positiva [2 500 UI/ml (5 x limite inferior de quantificação (LLoQ))] e uma amostra de sangue total negativo de CMV. Foram realizados 5 processamentos com diferentes combinações de 3 lotes de kit AltoStar® CMV PCR Kit 1.5, 3 lotes de kit AltoStar® Purification Kit 1.5 e 3 lotes de AltoStar® Internal Control 1.5 (controlo interno).

Os processamentos foram efetuados em 5 dias diferentes utilizando 3 AltoStar® Automation System AM16 (sistema de automação) diferentes e 3 CFX96™ DW Dx. Cada componente do painel foi testado em pelo menos 4 réplicas por processamento. Foram determinadas a repetibilidade (variabilidade intraprocessamento), a variabilidade entre lotes e a reprodutibilidade (variabilidade total) com base em valores de quantificação para as amostras muito e pouco positivas de CMV (consulte a Tabela 18) e nos valores do ciclo limiar (C_q) para o Internal Control (controlo interno) nas amostras negativas de CMV (consulte a Tabela 19).

Tabela 18: Dados de precisão (CV% dados de quantificação em log10) para amostras muito positivas e pouco positivas de sangue total de CMV

<table>
<thead>
<tr>
<th></th>
<th>Amostra muito positiva de CMV (10 000 UI/ml)</th>
<th>Amostra pouco positiva de CMV (2 500 UI/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraprocessamento</td>
<td>1,17 - 2,66</td>
<td>1,65 - 4,11</td>
</tr>
<tr>
<td>Entre Lotes</td>
<td>3,22</td>
<td>4,33</td>
</tr>
<tr>
<td>Total</td>
<td>4,55</td>
<td>6,13</td>
</tr>
</tbody>
</table>
Tabela 19: Dados de precisão (CV% valores \(C_q \)) para o Internal Control (controlo interno) nas amostras de sangue total negativas de CMV

<table>
<thead>
<tr>
<th></th>
<th>Internal Control (controlo interno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade Intraprocessamento</td>
<td>0,09 - 0,67</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>1,06</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td>1,08</td>
</tr>
</tbody>
</table>

12.2.5 Taxa de insucesso total

A solidez do kit AltoStar® CMV PCR Kit 1.5 foi avaliada através do teste de 30 amostras de sangue total negativas de CMV, de dadores individuais, potenciadas com CMV para uma concentração final de 3 x LDD (915 UI/ml). Todas as amostras testadas (30 de 30) mostraram resultados positivos no canal de deteção por fluorescência específico do CMV (FAM™).

12.2.6 Transferência

A transferência é essencialmente um risco dependente da ordem das tarefas e independente do ensaio PCR utilizado. Para a AltoStar® Workflow (ordem das tarefas), utilizou-se o kit AltoStar® Parvovirus B19 PCR Kit 1.5 como modelo exemplar. A potencial contaminação cruzada através de transferência de amostras muito positivas foi avaliada testando alternativamente amostras muito positivas do parvovírus B19 (1,00E+07 UI/ml) e amostras negativas (n = 44 cada por processamento; 2 processamentos) com o kit AltoStar® Parvovirus B19 PCR Kit 1.5. Não foi observada transferência (ou seja, todas as amostras negativas do parvovírus B19 tiveram um resultado negativo).
12.2.7 Avaliação de diagnóstico

O kit AltoStar® CMV PCR Kit 1.5 foi avaliado num estudo comparativo com o kPCR PLX® Cytomegalovirus (CMV) DNA Assay com marcação CE. Foram testadas retrospectivamente em paralelo 79 amostras de sangue total utilizando o kPCR PLX® Cytomegalovirus (CMV) DNA Assay em combinação com o VERSANT® kPCR Molecular System (Siemens) e utilizando o kit AltoStar® CMV PCR Kit 1.5 em combinação com o kit AltoStar® Purification Kit 1.5 e o AltoStar® Internal Control 1.5 (controlo interno) no AltoStar® Automation System AM16 (sistema de automação) e no CFX96™ DW Dx. Para a análise qualitativa, foram excluídas todas as amostras com um resultado inválido para um ou ambos os ensaios, assim como amostras com um resultado quantitativo inferior ao limite de deteção de um ou ambos os ensaios. Os resultados das 74 amostras restantes são apresentados na Tabela 20.

Tabela 20: Resultados da avaliação da sensibilidade e da especificidade de diagnóstico das amostras de sangue total

<table>
<thead>
<tr>
<th>AltoStar® CMV PCR Kit 1.5</th>
<th>kPCR PLX® Cytomegalovirus (CMV) DNA Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>54</td>
</tr>
<tr>
<td>NEGATIVO</td>
<td>0</td>
</tr>
</tbody>
</table>

A sensibilidade e a especificidade de diagnóstico do kit AltoStar® CMV PCR Kit 1.5 em comparação com o kPCR PLX® Cytomegalovirus (CMV) DNA Assay foi de 100 %, respectivamente.
No que respeita à correlação quantitativa, foram excluídas as amostras com resultado negativo num ou em ambos os ensaios, assim como as amostras com um resultado quantitativo abaixo do limite inferior de quantificação de um ou ambos os ensaios. Os resultados das 53 amostras restantes foram utilizados para a correlação quantitativa por análise de regressão linear (consulte a Figura 52).

kPCR PLX® Cytomegalovirus (CMV) DNA Assay vs. Kit AltoStar® CMV PCR Kit 1.5

Verificou-se uma correlação bastante boa entre os resultados quantitativos obtidos com o kit AltoStar® CMV PCR Kit 1.5 e o kPCR PLX® Cytomegalovirus (CMV) DNA Assay [coeficiente de correlação $R = 0.95$ ($R^2 = 0.91$)].
12.3 Urina

12.3.1 Sensibilidade analítica

Para determinação do limite de detecção (LDD), foi gerada uma série de diluições da 1.ª Norma Internacional da OMS para o citomegalovírus humano para as Técnicas Baseadas na Amplificação de Ácidos Nucleicos (NIBSC, código: 09/162) na urina entre 5000 e 10 UI/ml. Cada diluição foi testada em 8 réplicas em 3 dias diferentes (total n = 24 por diluição) utilizando combinações de 3 lotes de kit AltoStar® CMV PCR Kit 1.5, 3 lotes de kit AltoStar® Purification Kit 1.5 e 3 lotes de AltoStar® Internal Control 1.5 (controlo interno). Foram efetuados processamentos utilizando 3 AltoStar® Automation System AM16 (sistema de automação) e CFX96™ DW Dx diferentes.

Os dados de todos os processamentos foram combinados e foi realizada uma análise de probit para determinar o valor do LDD de 95 %.

Tabela 21: Resultados PCR utilizados para calcular a sensibilidade analítica do kit AltoStar® CMV PCR Kit 1.5

<table>
<thead>
<tr>
<th>Concentração [UI/ml]</th>
<th>N [total]</th>
<th>N [positivo]</th>
<th>Taxa de positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>2 500</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1 000</td>
<td>23</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>24</td>
<td>22</td>
<td>92</td>
</tr>
<tr>
<td>250</td>
<td>24</td>
<td>21</td>
<td>88</td>
</tr>
<tr>
<td>200</td>
<td>24</td>
<td>19</td>
<td>79</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>13</td>
<td>54</td>
</tr>
<tr>
<td>50</td>
<td>24</td>
<td>13</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>6</td>
<td>25</td>
</tr>
</tbody>
</table>

O limite de detecção do kit AltoStar® CMV PCR Kit 1.5 para a detecção de CMV na urina é de 711 UI/ml (intervalo de confiança de 95 %: 420 - 1 625 UI/ml).
12.3.2 Especificidade analítica

A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 é garantida pela seleção meticulosa dos oligonucleotídeos (primers e sondas). Os oligonucleotídeos foram verificados por análise de comparação das sequências com sequências publicamente disponíveis, para garantir que todos os genótipos de CMV relevantes serão detetados. Para verificação da especificidade analítica do kit AltoStar® CMV PCR Kit 1.5, foram realizados os seguintes ensaios (consulte os capítulos 12.3.2.1 Amostras negativas a 12.3.2.3 Reatividade cruzada):

12.3.2.1 Amostras negativas

Foram testadas 35 amostras de urina negativa de CMV de doadores individuais com o kit AltoStar® CMV PCR Kit 1.5. Todas as amostras testadas (35 de 35) mostraram resultados negativos para o ADN específico do CMV e positivos para o Internal Control (controlo interno). A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 para amostras de urina é ≥ 95 %.

12.3.2.2 Substâncias interferentes

Para avaliar a influência de substâncias endógenas e exógenas potencialmente interferentes no desempenho do kit AltoStar® CMV PCR Kit 1.5, foram potenciadas substâncias selecionadas em amostras de urina com CMV numa concentração de 3 x LDD (2 133 UI/ml), de 50 000 UI/ml e sem CMV, respectivamente.

Os resultados obtidos de amostras com substâncias potencialmente interferentes foram comparados com os resultados gerados de amostras de urina sem interferente adicionado. Cada amostra foi processada em 3 réplicas. Não foi observada nenhuma interferência nas amostras contendo níveis elevados de substâncias endógenas (bilirrubina, glucose, sangue total humano e albumina do soro humano) ou exógenas (Ganciclovir, Foscarnet, Azatioprina e Ciclosporina).

ATENÇÃO

A presença de inibidores de PCR poderá causar resultados inválidos ou falsos negativos.
12.3.2.3 Reatividade cruzada

A especificidade analítica do kit AltoStar® CMV PCR Kit 1.5 no que respeita à reatividade cruzada com outros agentes patogénicos que não o CMV foi avaliada. Além dos agentes patogénicos testados para amostras de plasma e sangue total (consulte os capítulos 12.1.2.3 Reatividade cruzada e 12.2.2.3 Reatividade cruzada), foram testados agentes patogénicos que poderiam ser encontrados na urina da matriz da amostra (por ex., agentes patogénicos associados a infeções do trato urinário e doenças sexualmente transmissíveis).

O kit AltoStar® CMV PCR Kit 1.5 não reagiu com qualquer um dos seguintes agentes patogénicos:

- Chlamydia trachomatis
- Escherichia coli
- Klebsiella pneumoniae
- Mycoplasma hominis
- Proteus mirabilis
- Ureaplasma urealyticum
- Ureaplasma parvum

ATENÇÃO

No caso de a amostra conter outros agentes patogénicos que não o CMV, poderá haver concorrência com a amplificação alvo ou reatividades cruzadas.

12.3.3 Intervalo linear

Para a determinação do intervalo linear do kit AltoStar® CMV PCR Kit 1.5 foi testada uma série de diluições do CMV em urina entre 100 000 000 e 200 UI/ml. Foram testadas diluições com uma concentração entre 100 000 000 e 1 000 000 UI/ml em 4 réplicas e foram testadas diluições com uma concentração entre 100 000 e 200 UI/ml em 8 réplicas. Foi efetuada uma análise com base numa regressão polinomial.

O intervalo linear do kit AltoStar® CMV PCR Kit 1.5 para a quantificação de CMV na urina é de 1 000 - 100 000 000 UI/ml. É apresentada uma representação gráfica dos dados na Figura 53.
12.3.4 Precisão

A precisão do kit AltoStar® CMV PCR Kit 1.5 foi avaliada utilizando um painel constituído por uma amostra de CMV muito positiva (50 000 UI/ml), uma amostra de CMV pouco positiva [5 000 UI/ml (5 x limite inferior de quantificação (LLoQ))] e uma amostra de urina negativa de CMV. Foram realizados 5 processamentos com diferentes combinações de 3 lotes de kit AltoStar® CMV PCR Kit 1.5, 3 lotes de kit AltoStar® Purification Kit 1.5 e 3 lotes de AltoStar® Internal Control 1.5 (controlo interno). Os processamentos foram efetuados em 5 dias diferentes utilizando 3 AltoStar® Automation System AM16 (sistema de automação) diferentes e 3 CFX96™ DW Dx. Cada componente do painel foi testado em pelo menos 4 réplicas por processamento.
Foram determinadas a repetibilidade (variabilidade intraprocessamento), a variabilidade entre lotes e a reprodutibilidade (variabilidade total) com base em valores de quantificação para as amostras muito e pouco positivas de CMV (consulte a Tabela 22) e nos valores do ciclo limiar (Cₜ) para o Internal Control (controlo interno) nas amostras negativas de CMV (consulte a Tabela 23).

Tabela 22: Dados de precisão (CV% dados de quantificação em log10) para amostras de urina muito e pouco positivas de CMV

<table>
<thead>
<tr>
<th></th>
<th>Amostra muito positiva de CMV (50 000 UI/ml)</th>
<th>Amostra pouco positiva de CMV (5 000 UI/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraprocessamento</td>
<td>0,09 - 0,67</td>
<td>0,47 - 0,85</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>2,89</td>
<td>3,69</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td>2,29</td>
<td>2,90</td>
</tr>
</tbody>
</table>

Tabela 23: Dados de precisão (CV% valores Cₜ) para o Internal Control (controlo interno) nas amostras de urina negativa de CMV

<table>
<thead>
<tr>
<th></th>
<th>Internal Control (controlo interno)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade</td>
<td></td>
</tr>
<tr>
<td>Intraprocessamento</td>
<td>0,20 - 0,36</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>0,40</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td>1,00</td>
</tr>
</tbody>
</table>

12.3.5 Taxa de insucesso total

A solidez do kit AltoStar® CMV PCR Kit 1.5 foi avaliada através do teste de 30 amostras de urina negativa de CMV, de dadores individuais, potenciadas com CMV para uma concentração final de 3 x LDD (2 133 UI/ml). Todas as amostras testadas (30 de 30) mostraram resultados positivos no canal de deteção por fluorescência específico do CMV (FAM™).
12.3.6 Transferência

A transferência é essencialmente um risco dependente da ordem das tarefas e independente do ensaio PCR utilizado. Para a AltoStar® workflow (ordem das tarefas), utilizou-se o kit AltoStar® Parvovirus B19 PCR Kit 1.5 como modelo exemplar. A potencial contaminação cruzada através de transferência de amostras muito positivas foi avaliada testando alternativamente amostras muito positivas do parvovírus B19 (1,00E+07 UI/ml) e amostras negativas (n = 44 cada por processamento; 2 processamentos) com o kit AltoStar® Parvovirus B19 PCR Kit 1.5. Não foi observada transferência (ou seja, todas as amostras negativas do parvovírus B19 tiveram um resultado negativo).

12.3.7 Avaliação de diagnóstico

O kit AltoStar® CMV PCR Kit 1.5 foi avaliado num estudo comparativo com o CMV R-gene® kit (bioMérieux) com marcação CE. Foram testadas retrospectivamente em paralelo 87 amostras de urina, retiradas de um controlo de rotina do CMV, utilizando o CMV R-gene® kit (bioMérieux) em combinação com o MagNA Pure 96 DNA and Viral Nucleic Acid Small Volume Kit (Roche) e o MagNA Pure 96 Instrument (Roche) e o kit AltoStar® CMV PCR Kit 1.5 em combinação com o kit AltoStar® Purification Kit 1.5 e o AltoStar® Internal Control 1.5 (controlo interno) no AltoStar® Automation System AM16 (sistema de automação) e no CFX96™ DW Dx. Para a análise qualitativa, foram excluídas todas as amostras com um resultado inválido para um ou ambos os ensaios, assim como amostras com um resultado quantitativo inferior ao limite de detecção de um ou ambos os ensaios. Os resultados das 80 amostras restantes são apresentados na Tabela 24.
A sensibilidade e a especificidade de diagnóstico do kit AltoStar® CMV PCR Kit 1.5 em comparação com o CMV R-gene® kit foi de 98 % e 100 %, respectivamente.

No que respeita à correlação quantitativa, foram excluídas as amostras com resultado negativo num ou em ambos os ensaios, assim como as amostras com um resultado quantitativo abaixo do limite inferior de quantificação de um ou ambos os ensaios. Os resultados das 45 amostras restantes foram utilizados para a correlação quantitativa por análise de regressão linear (consulte a Figura 54).
Verificou-se uma correlação bastante boa entre os resultados quantitativos obtidos com o kit AltoStar® CMV PCR Kit 1.5 e o CMV R-gene® kit [coeficiente de correlação $R = 0,96$ ($R^2 = 0,91$)].
13. Controlo de qualidade
De acordo com o Sistema de Gestão da Qualidade da altona Diagnostics GmbH, certificado pela ISO EN 13485, cada lote de kit AltoStar® CMV PCR Kit 1.5 é testado face a especificações predeterminadas de modo a garantir uma qualidade do produto consistente.

14. Apoio técnico
Para apoio ao cliente, contacte o apoio técnico da altona Diagnostics:

 correio electrónico: support@altona-diagnostics.com
 telefone: +49-(0)40-5480676-0

15. Bibliografia

16. Marcas comerciais e isenções de responsabilidade

AltoStar®, kPCR PLX® (altona Diagnostics); R-gene® (bioMérieux); CFX96™, CFX Manager™, Hard-Shell® (Bio-Rad); FAM™, VIC™ (Thermo Fisher Scientific).

Os nomes registados, marcas comerciais, etc. utilizados neste documento, mesmo onde não estão especificamente marcados como tal, não devem ser considerados como estando desprotegidos pela legislação.

O kit AltoStar® CMV PCR Kit 1.5 é um kit de diagnóstico com a marcação CE, de acordo com a Diretiva Europeia 98/79/CE relativa ao diagnóstico in vitro.

Produto não licenciado junto da Health Canada e não autorizado ou aprovado pela FDA.

Não disponível em todos os países.

© 2020 altona Diagnostics GmbH. Todos os direitos reservados.
17. Explicação de símbolos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Dispositivo médico de diagnóstico in vitro</td>
</tr>
<tr>
<td>GTIN</td>
<td>Número de item de comércio internacional</td>
</tr>
<tr>
<td>LOT</td>
<td>Código do lote</td>
</tr>
<tr>
<td>CONT</td>
<td>Conteúdo</td>
</tr>
<tr>
<td>CAP</td>
<td>Cor da tampa</td>
</tr>
<tr>
<td>REF</td>
<td>Número de catálogo</td>
</tr>
<tr>
<td>NUM</td>
<td>Número</td>
</tr>
<tr>
<td>COMP</td>
<td>Componente</td>
</tr>
<tr>
<td>📚</td>
<td>Consulte as instruções de utilização</td>
</tr>
<tr>
<td>🔫</td>
<td>Contém o suficiente para "n" testes/reações (rxns)</td>
</tr>
<tr>
<td>🔥</td>
<td>Limite de temperatura</td>
</tr>
<tr>
<td>⌚</td>
<td>Data de validade</td>
</tr>
<tr>
<td>🧼</td>
<td>Fabricante</td>
</tr>
<tr>
<td>🚨</td>
<td>Atenção</td>
</tr>
<tr>
<td>MAT</td>
<td>Número de material</td>
</tr>
<tr>
<td>📚</td>
<td>Versão</td>
</tr>
<tr>
<td>📧</td>
<td>Nota</td>
</tr>
</tbody>
</table>
always a drop ahead.