Instructions for Use

RealStar®
BKV PCR Kit 1.2

02/2018 EN
RealStar®

BKV PCR Kit 1.2

For use with

LightCycler® 1.2/1.5/2.0 Instruments (Roche)
SmartCycler® II (Cepheid)

altona Diagnostics GmbH • Mörkenstr. 12 • D-22767 Hamburg
Content

1. Intended Use .. 6
2. Kit Components ... 6
3. Storage ... 6
4. Material and Devices required but not provided ... 7
5. Background Information ... 8
6. Product Description .. 8
 6.1 Real-Time PCR Instruments .. 10
7. Warnings and Precautions .. 10
8. Procedure .. 11
 8.1 Sample Preparation .. 11
 8.2 Master Mix Setup ... 13
 8.3 Reaction Setup ... 14
9. Programming the Real-Time PCR Instrument ... 15
 9.1 Settings ... 15
 9.2 Fluorescence Detectors (Dyes) ... 16
 9.3 Temperature Profile and Dye Acquisition ... 16
10. Data Analysis .. 17
 10.1 Validity of Diagnostic Test Runs ... 17
 10.1.1 Valid Diagnostic Test Run (qualitative) .. 17
 10.1.2 Invalid Diagnostic Test Run (qualitative) .. 17
 10.1.3 Valid Diagnostic Test Run (quantitative) .. 18
 10.1.4 Invalid Diagnostic Test Run (quantitative) .. 18
10.2 Interpretation of Results.. 19
10.2.1 Qualitative Analysis.. 19
10.2.2 Quantitative Analysis.. 19

11. Performance Evaluation.. 21
11.1 Analytical Sensitivity... 21
11.2 Analytical Specificity.. 22
11.3 Linear Range... 22
11.4 Precision.. 24

12. Limitations.. 25

13. Quality Control .. 25

14. Technical Assistance .. 26

15. Literature.. 26

16. Trademarks and Disclaimers ... 27

17. Explanation of Symbols .. 28
1. Intended Use

The RealStar® BKV PCR Kit 1.2 is an *in vitro* diagnostic test, based on real-time PCR technology, for the detection and quantification of BK virus (BKV) specific DNA.

2. Kit Components

<table>
<thead>
<tr>
<th>Lid Color</th>
<th>Component</th>
<th>Number of Vials</th>
<th>Volume [µl/Vial]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Master A</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Purple</td>
<td>Master B</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>Green</td>
<td>Internal Control</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Red</td>
<td>QS1-4</td>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>White</td>
<td>Water (PCR grade)</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

* The RealStar® BKV PCR Kit 1.2 contains Quantification Standards (QS) at four different concentrations (see Chapter 6. Product Description)

3. Storage

- The RealStar® BKV PCR Kit 1.2 is shipped on dry ice. The components of the kit should arrive frozen. If one or more components are not frozen upon receipt, or if tubes have been compromised during shipment, contact altona Diagnostics GmbH for assistance.
- All components should be stored between -25°C and -15°C upon arrival.
- Repeated thawing and freezing of Master reagents (more than twice) should be avoided, as this might affect the performance of the assay. The reagents should be frozen in aliquots, if they are to be used intermittently.
- Storage between +2°C and +8°C should not exceed a period of two hours.
- Protect Master A and Master B from light.
4. Material and Devices required but not provided

- Appropriate real-time PCR instrument (see chapter 6.1 Real-Time PCR Instruments)
- Appropriate nucleic acid extraction system or kit (see chapter 8.1 Sample Preparation)
- Desktop centrifuge with a rotor for 2 ml reaction tubes
- Minicentrifuge with a rotor for Cepheid reaction tubes
- Vortex mixer
- LightCycler® capillaries with corresponding closing material
- Cepheid reaction tubes for the SmartCycler® II
- Pipettes (adjustable)
- Pipette tips with filters (disposable)
- Powder-free gloves (disposable)

NOTE

Please ensure that all instruments used have been installed, calibrated, checked and maintained according to the manufacturer’s instructions and recommendations.
5. Background Information

The family *Polyomaviridae* consists of at least 16 members, infecting different mammalian species. Two of them, *BK polyomavirus* (BKV, BK virus) and *JC polyomavirus* (JCV, JC virus) establish ubiquitous infections in human worldwide.

Polyomaviruses are small non-enveloped, icosahedral viruses with a supercoiled double-stranded DNA genome of approximately 5000 base pairs (bp). The human polyomaviruses share ~70% sequence identity with *Simian virus 40* (SV40). Despite this high sequence homology, polyomaviruses exhibit a restricted host range with distinct biological behaviour and disease pathogenesis.

Primary infections with BKV generally occur in early childhood and are typically subclinical, followed by lifelong persistence. The epithelial cells of kidney, ureter and bladder were identified as predominant cell types persistently infected by BKV. Whereas polyomavirus infections remain unapparent in immunocompetent individuals, reactivation of BKV and/or JCV in association with immunosuppression may lead to serious diseases. BKV reactivation is most common in bone marrow and renal transplant patients, resulting in hemorrhagic cystitis (HC) and polyomavirus associated nephropathy (PVAN), respectively.

6. Product Description

The RealStar® BKV PCR Kit 1.2 is an *in vitro* diagnostic test, based on real-time PCR technology, for the detection and quantification of BK virus (BKV) specific DNA.

The assay includes a heterologous amplification system (Internal Control) to identify possible PCR inhibition and to confirm the integrity of the reagents of the kit.

Real-time PCR technology utilizes polymerase chain reaction (PCR) for the amplification of specific target sequences and target specific probes for the detection of the amplified DNA. The probes are labelled with fluorescent reporter and quencher dyes.
Probes specific for BKV DNA are labelled with the fluorophore FAM™. The probe specific for the Internal Control (IC) is labelled with a fluorophore showing similar characteristics to Cy3.

Using probes linked to distinguishable dyes enables the parallel detection of BKV specific DNA and the Internal Control in corresponding detector channels of the real-time PCR instrument.

The test consists of two processes in a single tube assay:

- PCR amplification of target DNA and Internal Control
- Simultaneous detection of PCR amplicons by fluorescent dye labelled probes

The RealStar® BKV PCR Kit 1.2 consists of:

- Two Master reagents (Master A and Master B)
- Internal Control (IC)
- Four Quantification Standards (QS1 - QS4)
- PCR grade water

Master A and Master B contain all components (PCR buffer, DNA polymerase, magnesium salt, primers and probes) to allow PCR mediated amplification and detection of BKV specific DNA and Internal Control in one reaction setup.

The Quantification Standards contain standardized concentrations of BKV specific DNA. These Quantification Standards were calibrated against the 1st World Health Organization International Standard for BK Virus for Nucleic Acid Amplification Techniques (NAT) (NIBSC code 14/212). The Quantification Standards can be used individually as positive controls, or together to generate a standard curve, which can be used to determine the concentration of BKV specific DNA in a sample.
The Quantification Standards have the following concentrations:

<table>
<thead>
<tr>
<th>Quantification Standard</th>
<th>Concentration [IU/µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS1</td>
<td>1.00E+04</td>
</tr>
<tr>
<td>QS2</td>
<td>1.00E+03</td>
</tr>
<tr>
<td>QS3</td>
<td>1.00E+02</td>
</tr>
<tr>
<td>QS4</td>
<td>1.00E+01</td>
</tr>
</tbody>
</table>

6.1 Real-Time PCR Instruments

The RealStar® BKV PCR Kit 1.2 was developed and validated to be used with the following real-time PCR instruments:

- LightCycler® 1.2/1.5/2.0 Instruments (Roche)
- SmartCycler® II (Cepheid)

7. Warnings and Precautions

Read the Instructions for Use carefully before using the product.

- Before first use check the product and its components for:
 - Integrity
 - Completeness with respect to number, type and filling (see chapter 2. Kit Components)
 - Correct labelling
 - Frozenness upon arrival
- Use of this product is limited to personnel specially instructed and trained in the techniques of real-time PCR and *in vitro* diagnostic procedures.
Specimens should always be treated as infectious and/or biohazardous in accordance with safe laboratory procedures.

Wear protective disposable powder-free gloves, a laboratory coat and eye protection when handling specimens.

Avoid microbial and nuclease (DNase/RNase) contamination of the specimens and the components of the kit.

Always use DNase/RNase-free disposable pipette tips with aerosol barriers.

Always wear protective disposable powder-free gloves when handling kit components.

Use separated and segregated working areas for (i) sample preparation, (ii) reaction setup and (iii) amplification/detection activities. The workflow in the laboratory should proceed in unidirectional manner. Always wear disposable gloves in each area and change them before entering a different area.

Dedicate supplies and equipment to the separate working areas and do not move them from one area to another.

Store positive and/or potentially positive material separated from all other components of the kit.

Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organizations.

Do not open the reaction tubes/capillaries post amplification, to avoid contamination with amplicons.

Do not autoclave reaction tubes after the PCR, since this will not degrade the amplified nucleic acid and will bear the risk to contaminate the laboratory area.

Do not use components of the kit that have passed their expiration date.

Discard sample and assay waste according to your local safety regulations.

8. Procedure

8.1 Sample Preparation

Extracted DNA is the starting material for the RealStar® BKV PCR Kit 1.2.
The quality of the extracted DNA has a profound impact on the performance of the entire test system. It has to be ensured that the system used for nucleic acid extraction is compatible with real-time PCR technology. The following kits and systems are suitable for nucleic acid extraction:

- QIAamp® DNA Mini Kit (QIAGEN)
- QIAamp® Viral RNA Mini Kit (QIAGEN)
- QIAsymphony® (QIAGEN)
- NucliSENS® easyMag® (bioMérieux)
- MagNA Pure 96 System (Roche)
- m2000sp (Abbott)
- Maxwell® 16 IVD Instrument (Promega)
- VERSANT® kPCR Molecular System SP (Siemens Healthcare)

Alternative nucleic acid extraction systems and kits might also be appropriate. The suitability of the nucleic acid extraction procedure for use with RealStar® BKV PCR Kit 1.2 has to be validated by the user.

If using a spin column based sample preparation procedure including washing buffers containing ethanol, it is highly recommended to perform an additional centrifugation step for 10 min at approximately 17000 × g (~13000 rpm), using a new collection tube, prior to the elution of the nucleic acid.

CAUTION

If your sample preparation system is using washing buffers containing ethanol, make sure to eliminate any traces of ethanol prior to elution of the nucleic acid. Ethanol is a strong inhibitor of real-time PCR.

The use of carrier RNA is crucial for extraction efficiency and stability of the extracted nucleic acid.

For additional information and technical support regarding pre-treatment and
sample preparation please contact our Technical Support (see chapter 14. Technical Assistance).

8.2 Master Mix Setup

All reagents and samples should be thawed completely, mixed (by pipetting or gentle vortexing) and centrifuged briefly before use.

The RealStar® BKV PCR Kit 1.2 contains a heterologous Internal Control (IC), which can either be used as a PCR inhibition control or as a control of the sample preparation procedure (nucleic acid extraction) and as a PCR inhibition control.

► If the IC is used as a PCR inhibition control, but not as a control for the sample preparation procedure, set up the Master Mix according to the following pipetting scheme:

<table>
<thead>
<tr>
<th>Number of Reactions (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>10 µl</td>
<td>120 µl</td>
</tr>
<tr>
<td>Internal Control</td>
<td>1 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>16 µl</td>
<td>192 µl</td>
</tr>
</tbody>
</table>

► If the IC is used as a control for the sample preparation procedure and as a PCR inhibition control, add the IC during the nucleic acid extraction procedure.

► No matter which method/system is used for nucleic acid extraction, the IC **must not** be added directly to the specimen. The IC should always be added to the specimen/lysis buffer mixture. The volume of the IC which has to be added, always and only depends on the elution volume. It represents 10% of the elution volume. For instance, if the nucleic acid is going to be eluted in 60 µl of elution buffer or water, 6 µl of IC per sample must be added into the specimen/lysis buffer mixture.

► If the IC was added during the sample preparation procedure, set up the
Master Mix according to the following pipetting scheme:

<table>
<thead>
<tr>
<th>Number of Reactions (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>10 µl</td>
<td>120 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
</tbody>
</table>

CAUTION

If the IC (Internal Control) was added during the sample preparation procedure, at least the negative control must include the IC.

No matter which method/system is used for nucleic acid extraction, never add the IC directly to the specimen.

8.3 Reaction Setup

- Pipette 15 µl of the Master Mix into each required LightCycler® capillary or reaction tube for the SmartCycler® II.

- Add 10 µl of the sample (eluate from the nucleic acid extraction) or 10 µl of the controls (Quantification Standard, Positive or Negative Control).

<table>
<thead>
<tr>
<th>Reaction Setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix</td>
<td>15 µl</td>
</tr>
<tr>
<td>Sample or Control</td>
<td>10 µl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

- Make sure that at least one Positive (QS) and one Negative Control is used per run.
► For quantification purposes all Quantification Standards (QS1 to QS4) should be used.

► Thoroughly mix the samples and controls with the Master Mix by pipetting up and down.

► Close the capillaries or the tubes using appropriate lids.

► Centrifuge the LightCycler® capillaries or reaction tubes of the SmartCycler® II using an appropriate centrifuge for 30 seconds at approximately 400 x g (~2000 rpm).

9. Programming the Real-Time PCR Instrument

For basic information regarding the setup and programming of the different real-time PCR instruments, please refer to the user manual of the respective instrument.

For detailed programming instructions regarding the use of the RealStar® BKV PCR Kit 1.2 on specific real-time PCR instruments please contact our Technical Support (see chapter 14. Technical Assistance).

9.1 Settings

► Define the following settings:

<table>
<thead>
<tr>
<th>Settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Volume</td>
<td>25 µl*</td>
</tr>
<tr>
<td>Ramp Rate</td>
<td>Default</td>
</tr>
</tbody>
</table>

* The reaction volume has to be defined as 20 µl, if using a LightCycler® 2.0 Instrument (Roche).
9.2 Fluorescence Detectors (Dyes)

Define the fluorescence detectors (dyes):

<table>
<thead>
<tr>
<th>Target</th>
<th>LightCycler® 1.2/1.5</th>
<th>LightCycler® 2.0</th>
<th>SmartCycler® II</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKV specific DNA</td>
<td>F1</td>
<td>530</td>
<td>FAM™</td>
</tr>
<tr>
<td>Internal Control (IC)</td>
<td>F2</td>
<td>610</td>
<td>Cy3</td>
</tr>
</tbody>
</table>

CAUTION

For accurate data analysis on the LightCycler® Instruments a specific Color Compensation File might be needed. Please contact altona Diagnostics GmbH for assistance.

If using the LightCycler® 2.0 Instrument, only the detection channels 530 and 610 should be activated for color compensation.

9.3 Temperature Profile and Dye Acquisition

Define the temperature profile and dye acquisition:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Analysis Mode</th>
<th>Cycle Repeats</th>
<th>Acquisition</th>
<th>Temperature [°C]</th>
<th>Time [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturation</td>
<td>None</td>
<td>1</td>
<td>-</td>
<td>95</td>
<td>02:00</td>
</tr>
<tr>
<td>Amplification</td>
<td>Quantification</td>
<td>45</td>
<td>None</td>
<td>95</td>
<td>00:05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single</td>
<td>60</td>
<td>00:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>72</td>
<td>00:10</td>
</tr>
<tr>
<td>Cooling</td>
<td>None</td>
<td>1</td>
<td>-</td>
<td>40</td>
<td>00:30</td>
</tr>
</tbody>
</table>
10. Data Analysis

For basic information regarding data analysis on specific real-time PCR instruments, please refer to the user manual of the respective instrument.

For detailed instructions regarding the analysis of the data generated with the RealStar® BKV PCR Kit 1.2 on different real-time PCR instruments please contact our Technical Support (see chapter 14. Technical Assistance).

10.1 Validity of Diagnostic Test Runs

10.1.1 Valid Diagnostic Test Run (qualitative)

A qualitative diagnostic test run is valid, if the following control conditions are met:

<table>
<thead>
<tr>
<th>Control ID</th>
<th>Detection Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAM™/F1/530</td>
</tr>
<tr>
<td>Positive Control (QS)</td>
<td>+</td>
</tr>
<tr>
<td>Negative Control</td>
<td>-</td>
</tr>
</tbody>
</table>

* The presence or absence of a signal in the Cy®3/F2/610 channel is not relevant for the validity of the test run.

10.1.2 Invalid Diagnostic Test Run (qualitative)

A qualitative diagnostic test run is invalid, (i) if the run has not been completed or (ii) if any of the control conditions for a valid diagnostic test run are not met.

In case of an invalid diagnostic test run, repeat testing by using the remaining purified nucleic acids or start from the original samples again.
10.1.3 Valid Diagnostic Test Run (quantitative)

A **quantitative** diagnostic test run is **valid**, if all control conditions for a **valid qualitative** diagnostic test run are met [see chapter 10.1.1 Valid Diagnostic Test Run (qualitative)]. The **quantification** results are **valid** if the generated **standard curve** reaches the following control parameter value:

<table>
<thead>
<tr>
<th>Control Parameter</th>
<th>Valid Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R square (R^2)</td>
<td>≥ 0.98</td>
</tr>
</tbody>
</table>

NOTE

Not all real-time PCR instruments display the R square (R^2) value. For detailed information, please refer to the user manual of the respective instrument.

10.1.4 Invalid Diagnostic Test Run (quantitative)

A **quantitative** diagnostic test run is **invalid**, (i) if the run has not been completed or (ii) if any of the control conditions for a **valid quantitative** diagnostic test run are not met.

In case of an **invalid** diagnostic test run, repeat testing by using the remaining purified nucleic acids or start from the original samples again.
10.2 Interpretation of Results

10.2.1 Qualitative Analysis

<table>
<thead>
<tr>
<th>Detection Channel</th>
<th>Result Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™/F1/530</td>
<td>Cy®3/F2/610</td>
</tr>
<tr>
<td>+</td>
<td>+^*</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Detection of the Internal Control in the Cy®3/F2/610 detection channel is not required for positive results in the FAM™/F1/530 detection channel. A high BKV DNA load in the sample can lead to a reduced or absent Internal Control signal.

10.2.2 Quantitative Analysis

The RealStar® BKV PCR Kit 1.2 includes four Quantification Standards (QS). In order to generate a standard curve for quantitative analysis, these have to be defined as standards with appropriate concentrations (see chapter 6. Product Description). Using standards of known concentrations a standard curve for quantitative analysis can be generated.

\[C_t = m \cdot \log (N_0) + b \]

- \(C_t \): Threshold Cycle
- \(m \): Slope
- \(N_0 \): Initial Concentration
- \(b \): Intercept
Derived from the standard curve positive samples of unknown concentrations can be quantified.

\[N_0 = \frac{(C_i - b)}{m} \]

Figure 1: Quantification Standards (black), a positive (red) and a negative sample (blue) displayed in the Amplification Plot [A] and Standard Curve analysis [B]

NOTE

The concentration of the "Sample" is displayed in IU/µl and refers to the concentration in the eluate.

To determine the viral load of the original sample, the following formula has to be applied:

\[
\text{Viral load (Sample)} \text{ [IU/ml]} = \frac{\text{Volume (Eluate)} \text{ [µl]} \cdot \text{Viral load (Eluate)} \text{ [IU/µl]}}{\text{Sample Input} \text{ [ml]}}
\]
11. Performance Evaluation

Performance evaluation of the RealStar® BKV PCR Kit 1.2 was done using quantified BKV specific DNA isolated from BKV strain Dunlop (ATCC® Number: 45025).

11.1 Analytical Sensitivity

The analytical sensitivity of the RealStar® BKV PCR Kit 1.2 is defined as the concentration (copies/µl of the eluate) of BKV specific DNA molecules that can be detected with a positivity rate of 95%. The analytical sensitivity was determined by analysis of dilution series of quantified BKV specific DNA.

Table 1: PCR results used for the calculation of the analytical sensitivity with respect to the detection of BKV specific DNA

<table>
<thead>
<tr>
<th>Input Conc. [copies/µl]</th>
<th>Number of Replicates</th>
<th>Number of Positives</th>
<th>Hit Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.162</td>
<td>12</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>1.000</td>
<td>12</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>0.316</td>
<td>12</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>0.100</td>
<td>12</td>
<td>11</td>
<td>92</td>
</tr>
<tr>
<td>0.032</td>
<td>12</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>0.010</td>
<td>12</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>0.003</td>
<td>12</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

The analytical sensitivity of the RealStar® BKV PCR Kit 1.2 was determined by Probit analysis:

- For the detection of BKV specific DNA, the analytical sensitivity is 0.222 copies/µl [95% confidence interval (CI): 0.115 - 0.844 copies/µl]
11.2 Analytical Specificity

The analytical specificity of the RealStar® BKV PCR Kit 1.2 is ensured by the thorough selection of the oligonucleotides (primers and probes). The oligonucleotides were checked by sequence comparison analysis against publicly available sequences to ensure that all relevant BKV genotypes will be detected.

The analytical specificity of the RealStar® BKV PCR Kit 1.2 was evaluated by testing a panel of genomic DNA/RNA extracted from other polyomaviruses or other pathogens significant in immunocompromised patients.

The RealStar® BKV PCR Kit 1.2 did not cross-react with any of the following pathogens:

- Cytomegalovirus
- Epstein-Barr virus
- Hepatitis A virus
- Hepatitis B virus
- Hepatitis C virus
- Herpes simplex virus 1
- Herpes simplex virus 2
- Human herpesvirus 6A
- Human herpesvirus 6B
- Human herpesvirus 7
- Human herpesvirus 8
- Human immunodeficiency virus 1
- JC virus
- Simian virus 40
- Varicella-zoster virus

11.3 Linear Range

The linear range of the RealStar® BKV PCR Kit 1.2 was evaluated by analysing a logarithmic dilution series of DNA from BK virus strain Dunlop using concentrations ranging from $1.00E+09$ to $1.00E+00$ copies/µl. Each dilution was analysed in three replicates.
The linear range of the RealStar® BKV PCR Kit 1.2 extends over an interval of at least nine orders of magnitude.
11.4 Precision

Precision of the RealStar® BKV PCR Kit 1.2 was determined as intra-assay variability (variability within one experiment), inter-assay variability (variability between different experiments) and inter-lot variability (variability between different production lots). Total variability was calculated by combining the three analyses.

Variability data are expressed in terms of standard deviation and coefficient of variation. The data are based on quantification analysis of defined concentrations of BKV specific DNA and on threshold cycle (Ct) value in terms of the Internal Control. At least six replicates per sample were analysed for intra-assay, inter-assay and inter-lot variability.

Table 2: Precision data for the detection of BKV specific DNA

<table>
<thead>
<tr>
<th>BKV</th>
<th>Average Conc. [copies/µl]</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Assay Variability</td>
<td>171.33</td>
<td>6.99</td>
<td>4.08</td>
</tr>
<tr>
<td>Inter-Assay Variability</td>
<td>166.25</td>
<td>10.92</td>
<td>6.57</td>
</tr>
<tr>
<td>Inter-Lot Variability</td>
<td>171.96</td>
<td>7.03</td>
<td>4.09</td>
</tr>
<tr>
<td>Total Variability</td>
<td>168.36</td>
<td>10.20</td>
<td>6.06</td>
</tr>
</tbody>
</table>

Table 3: Precision data for the detection of the Internal Control

<table>
<thead>
<tr>
<th>Internal Control</th>
<th>Average Threshold Cycle (Ct)</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Assay Variability</td>
<td>26.23</td>
<td>0.05</td>
<td>0.18</td>
</tr>
<tr>
<td>Inter-Assay Variability</td>
<td>26.23</td>
<td>0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>Inter-Lot Variability</td>
<td>26.24</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>Total Variability</td>
<td>26.24</td>
<td>0.06</td>
<td>0.22</td>
</tr>
</tbody>
</table>
12. Limitations

- Strict compliance with the Instructions for Use is required for optimal results.
- Use of this product is limited to personnel specially instructed and trained in the techniques of real-time PCR and *in vitro* diagnostic procedures.
- Good laboratory practice is essential for proper performance of this assay. Extreme care should be taken to preserve the purity of the components of the kit and reaction setups. All reagents should be closely monitored for impurity and contamination. Any suspicious reagents should be discarded.
- Appropriate specimen collection, transport, storage and processing procedures are required for the optimal performance of this test.
- This assay must not be used on the specimen directly. Appropriate nucleic acid extraction methods have to be conducted prior to using this assay.
- The presence of PCR inhibitors (e.g. heparin) may cause underquantification, false negative or invalid results.
- Potential mutations within the target regions of the BKV genome covered by the primers and/or probes used in the kit may result in underquantification and/or failure to detect the presence of the pathogens.
- As with any diagnostic test, results of the RealStar® BKV PCR Kit 1.2 need to be interpreted in consideration of all clinical and laboratory findings.

13. Quality Control

In accordance with the altona Diagnostics GmbH EN ISO 13485-certified Quality Management System, each lot of RealStar® BKV PCR Kit 1.2 is tested against predetermined specifications to ensure consistent product quality.
14. Technical Assistance

For technical advice, please contact our Technical Support:

- **e-mail:** support@altona-diagnostics.com
- **phone:** +49-(0)40-5480676-0

15. Literature

16. Trademarks and Disclaimers

RealStar® (altona Diagnostics); ABI Prism® (Applied Biosystems); ATCC® (American Type Culture Collection); CFX96™ (Bio-Rad); Cy® (GE Healthcare); FAM™, JOE™, ROX™ (Life Technologies); LightCycler® (Roche); SmartCycler® (Cepheid); Maxwell® (Promega); Mx 3005P™ (Stratagene); NucliSENS®, easyMag® (bioMérieux); Rotor-Gene®, QIAamp®, MinElute®, QIAsymphony® (QIAGEN); VERSANT® (Siemens Healthcare).

Registered names, trademarks, etc. used in this document, even if not specifically marked as such, are not to be considered unprotected by law.

The RealStar® BKV PCR Kit 1.2 is a CE-marked diagnostic kit according to the European in vitro diagnostic directive 98/79/EC.

Product not licensed with Health Canada and not FDA cleared or approved.

Not available in all countries.

© 2018 altona Diagnostics GmbH; all rights reserved.
17. Explanation of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>In vitro diagnostic medical device</td>
</tr>
<tr>
<td>LOT</td>
<td>Batch code</td>
</tr>
<tr>
<td>CAP</td>
<td>Cap color</td>
</tr>
<tr>
<td>REF</td>
<td>Product number</td>
</tr>
<tr>
<td>CONT</td>
<td>Content</td>
</tr>
<tr>
<td>NUM</td>
<td>Number</td>
</tr>
<tr>
<td>COMP</td>
<td>Component</td>
</tr>
<tr>
<td>GTIN</td>
<td>Global trade identification number</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use</td>
</tr>
<tr>
<td></td>
<td>Contains sufficient for “n” tests/reactions (rxns)</td>
</tr>
<tr>
<td></td>
<td>Temperature limit</td>
</tr>
<tr>
<td></td>
<td>Use-by date</td>
</tr>
<tr>
<td></td>
<td>Manufacturer</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Version</td>
</tr>
</tbody>
</table>
Notes:
Notes:
always a drop ahead.