Instrucciones de uso

RealStar®
Chagas PCR Kit 1.0

10/2018 ES
RealStar®
Chagas PCR Kit 1.0

Para utilizar con

- Mx 3005P™ QPCR System (Stratagene)
- VERSANT® kPCR Molecular System AD (Siemens Healthcare)
- ABI Prism® 7500 SDS (Applied Biosystems)
- ABI Prism® 7500 Fast SDS (Applied Biosystems)
- LightCycler® 480 Instrument II (Roche)
- Rotor-Gene® 6000 (Corbett Research)
- Rotor-Gene® Q5/6 plex Platform (QIAGEN)
- CFX96™ Real-Time PCR Detection System (Bio-Rad)
- CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)
Contenido

1. **Uso indicado** .. 6
2. **Componentes del kit** ... 6
3. **Almacenamiento** ... 6
4. **Material y dispositivos necesarios pero no proporcionados** 7
5. **Información general** .. 8
6. **Descripción del producto** ... 10
 6.1 **Instrumentos de PCR en tiempo real** ... 11
7. **Advertencias y precauciones** ... 11
8. **Procedimiento** .. 13
 8.1 **Preparación de las muestras** .. 13
 8.2 **Preparación de la Master Mix** ... 14
 8.3 **Preparación de la reacción** .. 16
9. **Programación de los instrumentos de PCR en tiempo real** 17
 9.1 **Configuración** .. 17
 9.2 **Detectores de fluorescencia** .. 17
 9.3 **Perfil de temperatura y detección de fluorescencia** 18
10. **Análisis de datos** .. 18
 10.1 **Validez de las series de pruebas diagnósticas** .. 18
 10.1.1 **Serie válida de pruebas diagnósticas (cualitativa)** 19
 10.1.2 **Serie no válida de pruebas diagnósticas (cualitativa)** 19
 10.2 **Interpretación de los resultados** ... 19
 10.2.1 **Análisis cualitativo** .. 20
11. **Evaluación de rendimiento** ... 20
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Sensibilidad analítica</td>
<td>20</td>
</tr>
<tr>
<td>11.2 Especificidad analítica</td>
<td>21</td>
</tr>
<tr>
<td>11.3 Precisión</td>
<td>22</td>
</tr>
<tr>
<td>12. Limitaciones</td>
<td>23</td>
</tr>
<tr>
<td>13. Control de calidad</td>
<td>24</td>
</tr>
<tr>
<td>14. Servicio técnico</td>
<td>24</td>
</tr>
<tr>
<td>15. Bibliografía</td>
<td>24</td>
</tr>
<tr>
<td>16. Marcas comerciales e información legal</td>
<td>25</td>
</tr>
<tr>
<td>17. Explicación de los símbolos</td>
<td>26</td>
</tr>
</tbody>
</table>
1. **Uso indicado**

El RealStar® Chagas PCR Kit 1.0 es un test diagnóstico *in vitro*, basado en tecnología de PCR en tiempo real, para la detección cualitativa del ADN específico de *Trypanosoma cruzi*.

2. **Componentes del kit**

<table>
<thead>
<tr>
<th>Color tapa</th>
<th>Componente</th>
<th>Número de viales</th>
<th>Volumen [µl/vial]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td>Master A</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Violeta</td>
<td>Master B</td>
<td>8</td>
<td>180</td>
</tr>
<tr>
<td>Verde</td>
<td>Internal Control</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Rojo</td>
<td>Positive Control</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>Blanco</td>
<td>Water (PCR grade)</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

Internal Control (IC) = Control Interno

Positive Control = Control positivo

Water (PCR grade) = Agua indicada para PCR

3. **Almacenamiento**

- El RealStar® Chagas PCR Kit 1.0 se envía en hielo seco. Los componentes del kit deben llegar congelados. Si uno o más componentes no estuvieran congelados en el momento de la recepción, o si la integridad de los tubos se ha puesto en peligro durante el envío, póngase en contacto con altona Diagnostics GmbH para obtener ayuda.
- Todos los componentes deben almacenarse entre -25 y -15 °C tras su llegada.
- Debe evitarse la descongelación y congelación reiterada de los reactivos Master (más de dos veces), ya que podría repercutir en el rendimiento del producto. Los reactivos deben congelarse en alícuotas si se van a utilizar de manera intermitente.
• El almacenamiento entre +2 y +8 °C no debe superar un periodo de dos horas.
• Proteja Master A y Master B de la luz.

4. **Material y dispositivos necesarios pero no proporcionados**

• Instrumento adecuado de PCR en tiempo real (ver capítulo 6.1. Instrumentos de PCR en tiempo real)
• Sistema o kit de extracción de ácido nucleico adecuados (ver capítulo 8.1 Preparación de las muestras)
• Centrífuga de mesa con rotor para tubos de reacción de 2 ml
• Centrífuga con rotor para placas de microtitulación, si se utilizan placas de reacción de 96 pocillos
• Agitador vortex
• Placas de reacción de 96 pocillos adecuadas o tubos de reacción con el material de cierre (óptico) correspondiente
• Pipetas (ajustables)
• Puntas de pipetas con filtro (desechables)
• Guantes sin talco (desechables)

NOTA

Asegúrese de que todos los instrumentos utilizados se instalen, se calibren, se comprueben y se mantengan conforme a las instrucciones y recomendaciones del fabricante.

NOTA

Se recomienda encarecidamente utilizar el rotor de 72 pocillos con los tubos de reacción de 0,1 ml adecuados, si se utiliza el Rotor-Gene® 6000 (Corbett Research) o el Rotor-Gene® Q 5/6 plex (QIAGEN).
5. Información general

La enfermedad de Chagas es una infección parasitaria transmitida por vectores que tiene como causa el Trypanosoma cruzi (*T. cruzi*). Este protozoo parasitario pertenece a la orden Trypanosomatida, que incluye parásitos flagelados unicelulares obligados. La enfermedad de Changas es endémica en América Central y América del Sur, aunque se calcula que existen entre seis y siete millones de infectados en todo el mundo [1]. El protozoo se transmite a los humanos por el contacto con heces de insectos triatominos, los cuales se alimentan de la sangre de los huéspedes mientras estos duermen por la noche. La infección también puede producirse por vía oral [2] o congénita [3], así como a través de transfusiones de sangre contaminada o trasplantes de órganos [4 y 5]. La enfermedad de Chagas consta de dos fases: la aguda y la crónica. La fase aguda tiene una duración de dos meses y suele presentarse en forma de fiebre autolimitada asintomática. Se caracteriza por una parasitemia alta en la sangre en circulación. En caso de mostrar signos y síntomas, estos suelen ser leves, como hinchazón en el lugar de infección, fiebre, fatiga, sarpullidos, hinchazón en los párpados (signo de Romaña), dolor de cabeza, náuseas, diarrea o vómitos, glándulas inflamadas o agrandamiento del hígado o del bazo [6]. Si la fase aguda no se diagnostica y queda desatendida, la infección continuará, y es posible que avance a la fase crónica. La fase crónica puede ser permanente sin necesidad de provocar síntomas ni evolucionar en una manifestación clínica en entre un 10 y un 30 % de los pacientes. Los signos y síntomas de la fase crónica de la enfermedad de Chagas pueden producirse entre 10 y 20 años después de la infección inicial, o bien no llegar a producirse nunca. Sin embargo, en casos graves, sus signos y síntomas pueden ser los indicados a continuación. Latidos irregulares, insuficiencia cardíaca congestiva, paro cardiaco súbito, dificultad al tragar debido a un agradamiento del esófago y dolores abdominales o estreñimiento debido a un agradamiento del colon [6]. No existe ningún método infalible para diagnosticar la enfermedad de Chagas. En la fase aguda de la enfermedad, la carga parasitaria en la sangre en circulación es alta, y la enfermedad puede diagnosticarse mediante una microscopía de un frotis de sangre preparado con tinción de Giemsa [7]. En el Center of Disease Control and Prevention (Centro de control y prevención de enfermedades, CDC por sus siglas en inglés), se está realizando la detección molecular del ADN del *T. cruzi*. Para
RealStar® Chagas PCR Kit 1.0

eollo, se usa una combinación de tres ensayos PCR en tiempo real diferentes. El diagnóstico molecular de la enfermedad de Chagas se realiza en casos en los que se sospecha que la transmisión se ha producido por una transfusión de sangre o un trasplante, así como para casos congénitos. La detección molecular también puede resultar útil para la identificación temprana del *T. cruzi* en donaciones de sangre e infecciones por órganos trasplantados de donantes con la enfermedad de Chagas asintomática en fase crónica [8].

6. Descripción del producto

El RealStar® Chagas PCR Kit 1.0 es un test diagnóstico in vitro, basado en tecnología de PCR en tiempo real, para la detección cualitativa del ADN específico de *Trypanosoma cruzi*.

El test incluye un sistema de amplificación heterólogo (Control interno) para identificar una posible inhibición de PCR y para confirmar la integridad de los reactivos del kit.

La tecnología de PCR utiliza la reacción en cadena de la polimerasa (PCR) para la amplificación de secuencias de objetivo específicas y sondas específicas de objetivos para la detección del ADN amplificado. Las sondas se marcan con fluoróforos Reporter y Quencher.

Las sondas específicas para el ADN de *T. cruzi* están marcadas con el fluorocromo FAM™. La sonda específica para el Control interno está marcada con el fluorocromo JOE™.

El uso de sondas unidas a diferentes fluorocromos permite la detección paralela del ADN específico de *T. cruzi* y del Control interno en los canales de detección correspondientes del instrumento de PCR en tiempo real.

El test consta de dos procesos en un solo tubo:

- Amplificación de PCR del ADN diana y del Control interno
- Detección simultánea de amplicones de PCR mediante sondas marcadas con fluoróforos

El RealStar® Chagas PCR Kit 1.0 se compone de:

- Dos reactivos Master (Master A y Master B)
- Control interno (IC)
- Control positivo
- Agua indicada para PCR
Master A y Master B contienen todos los componentes (tampón de PCR, ADN polimerasa, sal de magnesio, cebadores y sondas) para permitir la amplificación mediante la PCR y la detección del ADN específico de *T. cruzi*, y el Control interno en una configuración de reacción.

6.1 Instrumentos de PCR en tiempo real

El RealStar® Chagas PCR Kit 1.0 se desarrolló y se validó para su uso con los siguientes instrumentos de PCR en tiempo real:

- Mx 3005P™ QPCR System (Stratagene)
- VERSANT® kPCR Molecular System AD (Siemens Healthcare)
- ABI Prism® 7500 SDS (Applied Biosystems)
- ABI Prism® 7500 Fast SDS (Applied Biosystems)
- LightCycler® 480 Instrument II (Roche)
- Rotor-Gene® 6000 (Corbett Research)
- Rotor-Gene® Q5/6 plex Platform (QIAGEN)
- CFX96™ Real-Time PCR Detection System (Bio-Rad)
- CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)

7. Advertencias y precauciones

Lea las instrucciones de uso detenidamente antes de utilizar el producto.

- Antes del primer uso, compruebe los siguientes puntos respecto al producto y sus componentes:
 - Integridad
 - Si está completo en cuanto a número, tipo y volumen (ver capítulo 2. Componentes del kit)
 - Etiquetaje correcto
 - Si está congelado al llegar
El uso de este producto se limita a personal instruido especialmente y formado en las técnicas de PCR en tiempo real y procedimientos de diagnóstico in vitro.

Las muestras deben tratarse siempre como si fueran infecciosas o biopeligrosas conforme a los procedimientos de seguridad en el laboratorio.

Utilice guantes protectores desechables sin talco, bata de laboratorio y protección ocular cuando manipule muestras.

Evite la contaminación microbiana y con nucleasas (ADNasas/ARNasas) de la muestra y de los componentes del kit.

Utilice siempre puntas de pipetas desechables libres de ADNasas/ARNasas con barreras de aerosol.

Utilice siempre guantes protectores desechables sin talco cuando manipule los componentes del kit.

Utilice áreas de trabajo separadas para (i) la preparación de las muestras, (ii) la configuración de reacción y (iii) las actividades de amplificación/detección. El flujo de trabajo en el laboratorio debe realizarse de manera unidireccional. Utilice siempre guantes desechables en cada área y cámbiense antes de acceder a un área distinta.

Utilice suministros y equipamiento en cada área de trabajo separada y no los translade de un área a otra.

Almacene el material positivo o presuntamente positivo separadamente de todos los demás componentes del kit.

No abra los tubos o placas de reacción después de la amplificación, para evitar la contaminación con amplicones.

Pueden utilizarse controles adicionales utilizando de acuerdo con las pautas o requisitos de las regulaciones locales, estatales y/o federales, o de organizaciones de acreditación.

No esterilice en el autoclave los tubos de reacción después de la PCR, ya que no degradará el ácido nucleico amplificado y conllevará el riesgo de contaminar la zona del laboratorio.

No utilice componentes del kit cuya fecha de caducidad.
8. Procedimiento

8.1 Preparación de las muestras

El ADN extraído es el material inicial para el RealStar® Chagas PCR Kit 1.0.

La calidad del ADN extraído tiene una repercusión fundamental en el rendimiento del test. Debe garantizarse que el sistema utilizado para la extracción de ácido nucleico sea compatible con la tecnología de PCR en tiempo real. Los siguientes kits y sistemas son adecuados para la extracción de ácido nucleico:

- QIAamp® DNA Mini Kit (QIAGEN)
- QIAsymphony® (QIAGEN)
- NucliSENS® easyMag® (bioMérieux)
- MagNA Pure 96 System (Roche)
- m2000sp (Abbott)
- Maxwell® 16 IVD Instrument (Promega)
- VERSANT® kPCR Molecular System SP (Siemens Healthcare)

También pueden resultar adecuados sistemas alternativos de extracción de ácido nucleico. La idoneidad del procedimiento de extracción de ácido nucleico para su uso con el RealStar® Chagas PCR Kit 1.0 debe validarla el usuario.

Si utiliza un procedimiento de preparación de muestras basado en centrífugación (spin column, en inglés) que incluya tampones de lavado que contengan etanol, se recomienda encarecidamente seguir un paso de centrifugación adicional durante 10 minutos a aproximadamente 17 000 x g (~13 000 rpm), utilizando un tubo de recogida nuevo, antes de la elución del ácido nucleico.
Si su sistema de preparación de pruebas utiliza tampones de lavado que contengan etanol, asegúrese de eliminar cualquier resto de etanol antes de la elución del ácido nucleico. **El etanol es un potente inhibidor de la PCR en tiempo real.**

PRECAUCIÓN

El uso de ARN portador es crucial para la eficiencia de la extracción y para la estabilidad del ácido nucleico extraído.

Si necesita más información o asistencia técnica en relación con el pretratamiento y la preparación de muestras, póngase en contacto con nuestro Servicio técnico (ver capítulo 14. Servicio técnico).

8.2 Preparación de la Master Mix

Todos los reactivos y muestras deben descongelarse completamente, mezclarse (pipeteando o aplicando un vortex suave) y centrifugarse brevemente antes de su uso.

El RealStar® Chagas PCR Kit 1.0 contiene un Control interno heterólogo, que puede utilizarse como control de inhibición de PCR o para controlar el procedimiento de preparación de muestras (extracción de ácido nucleico) y como control de inhibición de PCR.
Si se utiliza el Control interno como control de inhibición de PCR, pero no como control para el procedimiento de preparación de muestras, prepare la Master Mix de acuerdo con el siguiente esquema de pipeteo:

<table>
<thead>
<tr>
<th>Número de reacciones (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Internal Control (Control Interno)</td>
<td>1 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Volumen de Master Mix</td>
<td>21 µl</td>
<td>252 µl</td>
</tr>
</tbody>
</table>

Si se utiliza el Control interno como control para el procedimiento de preparación de muestras y como control de inhibición de PCR, añada el Control interno durante el procedimiento de extracción de ácido nucleico.

Sin importar que método o sistema se utilice para la extracción de ácido nucleico, el Control interno no debe añadirse directamente a la muestra. El Control interno debe añadirse siempre a la mezcla de muestra y tampón de lisis. El volumen del Control interno que debe añadirse dependerá siempre y únicamente del volumen de la elución. Representa el 10 % del volumen de la elución. Por ejemplo, si se va a eluir el ácido nucleico en 60 µl de tampón de elución o agua, deberán añadirse 6 µl de Control interno por muestra a la mezcla de muestra/tampón de lisis.

Si se añadió el Control interno durante el procedimiento de preparación de muestras, configure la Master Mix conforme al siguiente esquema de pipeteo:

<table>
<thead>
<tr>
<th>Número de reacciones (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Volumen de Master Mix</td>
<td>20 µl</td>
<td>240 µl</td>
</tr>
</tbody>
</table>
8.3 Preparación de la reacción

► Pipetee 20 µl de la Master Mix en cada pocillo necesario de una placa de reacción óptica de 96 pocillog o un tubo de reacción óptica.

► Añada 10 µl de la muestra (eluido de la extracción de ácido nucleico) o 10 µl de los controles (control positivo o negativo).

<table>
<thead>
<tr>
<th>Configuración de reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix</td>
</tr>
<tr>
<td>Muestra o control</td>
</tr>
<tr>
<td>Volumen total</td>
</tr>
</tbody>
</table>

► Asegúrese de que al menos un Positivo y al menos uno negativo por serie.

► Mezcle a fondo las muestras y los controles con la Master Mix pipeteando hacia arriba y hacia abajo.

► Cierre la placa de reacción de 96 pocillog con las tapas adecuadas o una lámina adhesiva óptica y los tubos de reacción con las tapas adecuadas.

► Centrífugue la placa de 96 pocillog en una centrífuga con un rotor de placa de microtitulación durante 30 segundos a aproximadamente 1000 x g (~3000 rpm).
9. Programación de los instrumentos de PCR en tiempo real

Para obtener información básica sobre la preparación y la programación de los diferentes instrumentos de PCR en tiempo real, consulte el manual de usuario del instrumento en cuestión.

Para obtener instrucciones detalladas para la programación en relación con el uso del RealStar® Chagas PCR Kit 1.0 en instrumentos de PCR en tiempo real, póngase en contacto con nuestro servicio técnico (ver capítulo 14. Servicio técnico).

9.1 Configuración

► Defina la siguiente configuración:

<table>
<thead>
<tr>
<th>Configuraciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de reacción</td>
</tr>
<tr>
<td>Ramp Rate</td>
</tr>
<tr>
<td>Referencia pasiva</td>
</tr>
</tbody>
</table>

9.2 Detectores de fluorescencia

► Defina los detectores de fluorescencia (colorantes):

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Nombre de detector</th>
<th>Reporter</th>
<th>Quencher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN específico de T. cruzi</td>
<td>T. cruzi</td>
<td>FAM™</td>
<td>(Ninguno)</td>
</tr>
<tr>
<td>Internal Control (Control interno)</td>
<td>IC</td>
<td>JOE™</td>
<td>(Ninguno)</td>
</tr>
</tbody>
</table>
9.3 Perfil de temperatura y detección de fluorescencia

Defina el perfil de temperatura y la detección de fluorescencia:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Repeticiones de ciclo</th>
<th>Obtención</th>
<th>Temperatura [°C]</th>
<th>Tiempo [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desnaturalización</td>
<td>Retención</td>
<td>1</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td>Amplificación</td>
<td>Ciclo</td>
<td>45</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sí</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>72</td>
</tr>
</tbody>
</table>

10. Análisis de datos

Para ver información básica en relación con el análisis de datos en instrumentos específicos de PCR en tiempo real, consulte el manual de usuario del instrumento en cuestión.

Para ver instrucciones sobre el análisis de los datos generados con el RealStar® Chagas PCR Kit 1.0 en diferentes instrumentos específicos de PCR en tiempo real, póngase en contacto con nuestro Servicio técnico (ver capítulo 14. Servicio técnico).
10.1 Validez de las series de pruebas diagnósticas

10.1.1 Serie válida de pruebas diagnósticas (cualitativa)

Una serie de pruebas diagnósticas cualitativa es válida si se cumplen las siguientes condiciones de control:

<table>
<thead>
<tr>
<th>Id. de control</th>
<th>Canal de detección</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAM™</td>
</tr>
<tr>
<td>Control positivo</td>
<td>+</td>
</tr>
<tr>
<td>Control negativo</td>
<td>-</td>
</tr>
</tbody>
</table>

* La presencia o ausencia de una señal en el canal JOE™ no es relevante para la validez de la prueba.

10.1.2 Serie no válida de pruebas diagnósticas (cualitativa)

Una serie de pruebas diagnósticas cualitativa es no válida (i) si la serie no se ha completado o (ii) si no se cumple cualquiera de las condiciones de control para una serie de pruebas diagnósticas válida.

En caso de que obtenga una serie de pruebas diagnósticas no válida, repita las pruebas utilizando el resto de ácidos nucleicos purificados o empiece de nuevo con las muestras originales.
10.2 Interpretación de los resultados

10.2.1 Análisis cualitativo

<table>
<thead>
<tr>
<th>Canal de detección</th>
<th>Interpretación del resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™</td>
<td>JOE™</td>
</tr>
</tbody>
</table>
| + | + | Se ha detectado ADN específico de *T. cruzi*
| - | + | No se ha detectado ADN específico de *T. cruzi*. La muestra no contiene cantidades detectables de ADN específico de *T. cruzi*.
| - | - | Inhibición de la PCR o fallo del reactivo. Repita el test con la muestra original o recoja y someta a pruebas una nueva muestra.

* La detección del Control interno en el canal de detección JOE™ no es necesaria para resultados positivos en el canal de detección FAM™. Una carga alta de ADN de *T. cruzi* en la muestra puede provocar señales reducidas o ausentes de Control interno.

1 *Trypanosoma rangeli* is a non-human pathogenic *Trypanosoma* species, having the same prevalence and transmission route as *Trypanosoma cruzi*. Due to the assay design *Trypanosoma rangeli* positive samples generate a positive signal in the FAM™ channel.

11. Evaluación de rendimiento

La evaluación de rendimiento del RealStar® Chagas PCR Kit 1.0 se realizó utilizando transcripciones *in vitro* específico de *Trypanosoma cruzi*.

11.1 Sensibilidad analítica

La sensibilidad analítica del RealStar® Chagas PCR Kit 1.0 se define como la concentración (copias/µl del eluido) de moléculas de ADN específico de *T. cruzi* que puedan detectarse con un índice positivo del 95 %. La sensibilidad analítica se determinó mediante el análisis de la serie de diluciones de ADN.
La sensibilidad analítica del RealStar® Chagas PCR Kit 1.0 se determinó mediante análisis Probit:

- Para la detección de ADN específico de *T. cruzi*, la sensibilidad analítica es 2,8 copias/µl [95% de intervalo de confianza (CI): 2,5-3,4 copias/µl]

11.2 Especificidad analítica

La especificidad analítica del RealStar® Chagas PCR Kit 1.0 se garantiza mediante la selección exhaustiva de los oligonucleótidos (cebadores y sondas). Los oligonucleótidos se comprobaron mediante un análisis de comparación con secuencias disponibles públicamente para asegurar que se detectarán todos los genotipos relevantes de *T. cruzi*.

Tabla 1: Resultados de PCR utilizados para el cálculo de la sensibilidad analítica con respecto a la detección específica del ADN de *T. cruzi*

<table>
<thead>
<tr>
<th>Conc. de entrada [copias/µl]</th>
<th>Número de replicados</th>
<th>Número de positivos</th>
<th>Índice de éxito [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,600</td>
<td>24</td>
<td>24</td>
<td>100,0</td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>24</td>
<td>100,0</td>
</tr>
<tr>
<td>5,000</td>
<td>24</td>
<td>24</td>
<td>100,0</td>
</tr>
<tr>
<td>3,160</td>
<td>48</td>
<td>46</td>
<td>95,8</td>
</tr>
<tr>
<td>2,500</td>
<td>24</td>
<td>23</td>
<td>95,8</td>
</tr>
<tr>
<td>1,500</td>
<td>24</td>
<td>9</td>
<td>37,5</td>
</tr>
<tr>
<td>1,000</td>
<td>48</td>
<td>2</td>
<td>4,2</td>
</tr>
<tr>
<td>0,316</td>
<td>24</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,100</td>
<td>24</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,032</td>
<td>24</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,010</td>
<td>24</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,003</td>
<td>24</td>
<td>0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
La especificidad analítica del RealStar® Chagas PCR Kit 1.0 se evaluó probando un panel de ADN/ARN genómico extraído de agentes patogénicos que provocan síntomas semelhantes a *T. cruzi*.

El RealStar® Chagas PCR Kit 1.0 no mostró reacciones cruzadas con ninguno de los siguientes patógenos:

- Virus Chikungunya
- Dengue virus
- Virus de inmunodeficiencia humana 1
- Virus de la influenza A
- Virus de la influenza B
- Virus del oeste del Nilo
- *Babesia microti*
- *Leishmania donovani*
- *Leishmania infantum*
- *Leishmania major*
- *Leishmania tropica*
- *Plasmodium falciparum*
- *Plasmodium vivax*
- *Plasmodium ovale*
- *Plasmodium malariae*
- *Plasmodium knowlesi*
- *Toxoplasma gondii*
- *Trypanosoma brucei*

11.3 Precisión

La precisión para el RealStar® Chagas PCR Kit 1.0 se determinó como variabilidad de intratest (variabilidad dentro de un experimento), variabilidad de intertest (variabilidad entre diferentes experimentos) y variabilidad interlote (variabilidad entre diferentes lotes de producción). La variabilidad total se calculó combinando los tres análisis.

Los datos de variabilidad se expresan en términos de desviación estándar y coeficiente de variación, basándose en valores de ciclo de umbral de \(C_t\). Se analizaron al menos seis replicados por muestra para variabilidad intratest, intertest e interlote.
Tabla 2: Datos de precisión para la detección específica del ADN de *T. cruzi*

<table>
<thead>
<tr>
<th></th>
<th>Cyclo de umbral medio (C<sub>t</sub>)</th>
<th>Desviación estándar</th>
<th>Coeficiente de variación [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidad intratest</td>
<td>26,82</td>
<td>0,11</td>
<td>0,40</td>
</tr>
<tr>
<td>Variabilidad intertest</td>
<td>27,14</td>
<td>0,28</td>
<td>1,04</td>
</tr>
<tr>
<td>Variabilidad interlote</td>
<td>26,85</td>
<td>0,09</td>
<td>0,34</td>
</tr>
<tr>
<td>Variabilidad total</td>
<td>27,03</td>
<td>0,28</td>
<td>1,04</td>
</tr>
</tbody>
</table>

Tabla 3: Datos de precisión para la detección específica del Control interno

<table>
<thead>
<tr>
<th></th>
<th>Cyclo de umbral medio (C<sub>t</sub>)</th>
<th>Desviación estándar</th>
<th>Coeficiente de variación [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidad intratest</td>
<td>24,91</td>
<td>0,08</td>
<td>0,31</td>
</tr>
<tr>
<td>Variabilidad intertest</td>
<td>24,99</td>
<td>0,07</td>
<td>0,28</td>
</tr>
<tr>
<td>Variabilidad interlote</td>
<td>24,92</td>
<td>0,07</td>
<td>0,28</td>
</tr>
<tr>
<td>Variabilidad total</td>
<td>24,96</td>
<td>0,08</td>
<td>0,32</td>
</tr>
</tbody>
</table>

12. Limitaciones

- Se requiere el cumplimiento estricto de las instrucciones de uso para obtener unos resultados óptimos.
- El uso de este producto se limita a personal instruido especialmente y formado en las técnicas de PCR en tiempo real y procedimientos de diagnóstico *in vitro*.
- Unas buenas prácticas de laboratorio son esenciales para que esta test tenga un rendimiento adecuado. Deben extremarse las precauciones para preservar la pureza de los componentes del kit y las configuraciones de reacción. Todos los reactivos deben supervisarse atentamente para saber si tienen impurezas y contaminación. Los reactivos sospechosos deben descartarse.
• Es necesario realizar procedimientos correctos de recolección, transporte, almacenamiento y procesamiento para que esta prueba tenga un rendimiento óptimo.

• Esta el test no debe utilizarse directamente en la muestra. Deben llevarse a cabo métodos adecuados de extracción de ácido nucleico antes de utilizar esta prueba de valoración.

• La presencia de inhibidores de la PCR (p.ej. heparina) puede provocar falsos negativos o resultados no válidos.

• Las posibles mutaciones dentro de las regiones objetivo del genoma de T. cruzi cubiertas por los cebadores o las sondas utilizados en el kit pueden provocar fallos al detectar la presencia del patógeno.

• Como con cualquier prueba diagnostica, los resultados del RealStar® Chagas PCR Kit 1.0 deben interpretarse teniendo en consideración todos los hallazgos clínicos y de laboratorio.

13. Control de calidad

De acuerdo con el sistema de control de calidad con certificación ISO 13485 de altona Diagnostics GmbH, cada lote del RealStar® Chagas PCR Kit 1.0 se somete a pruebas con especificaciones predeterminadas para asegurar la calidad consistente del producto.

14. Servicio técnico

Si necesita asesoramiento técnico, póngase en contacto con nuestro Servicio técnico:

E-mail: support@altona-diagnostics.com
Teléfono: +49-(0)40-5480676-0
15. Bibliografía

16. Marcas comerciales e información legal

RealStar® (altona Diagnostics); ABI Prism® (Applied Biosystems); ATCC® (American Type Culture Collection); CFX96™ (Bio-Rad); Cy® (GE Healthcare); FAM™, JOE™, ROX™ (Life Technologies); LightCycler® (Roche); SmartCycler® (Cepheid); Maxwell® (Promega); Mx 3005P™ (Stratagene); NucliSENS®, easyMag® (bioMérieux); Rotor-Gene®, QIAamp®, MinElute®, QIAsymphony® (QIAGEN); VERSANT® (Siemens Healthcare).

No debe considerarse que los nombres registrados, las marcas comerciales, etc. utilizados en este documento, incluso aunque no se marquen específicamente como tales, carecen de protección legal.

El RealStar® Chagas PCR Kit 1.0 es un kit de diagnóstico con marcado CE conforme a la directiva europea de diagnóstico in vitro 98/79/EC.

Producto sin licencia con Health Canada y sin autorización ni aprobación de la FDA.

No disponible en todos los países.

© 2018 altona Diagnostics GmbH; reservados todos los derechos.
17. Explicación de los símbolos

<table>
<thead>
<tr>
<th>Símbolos</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Dispositivo médico de diagnóstico in vitro</td>
</tr>
<tr>
<td>LOT</td>
<td>Código de lote</td>
</tr>
<tr>
<td>CAP</td>
<td>Color del tapón</td>
</tr>
<tr>
<td>REF</td>
<td>Número de producto</td>
</tr>
<tr>
<td>CONT</td>
<td>Contenido</td>
</tr>
<tr>
<td>NUM</td>
<td>Número</td>
</tr>
<tr>
<td>COMP</td>
<td>Componente</td>
</tr>
<tr>
<td>GTIN</td>
<td>Número mundial de artículo comercial</td>
</tr>
<tr>
<td>📕</td>
<td>Consultar instrucciones de uso</td>
</tr>
<tr>
<td>Σ</td>
<td>Contiene suficiente para «n» pruebas/reacciones (rxns)</td>
</tr>
<tr>
<td>📋</td>
<td>Límite de temperatura</td>
</tr>
<tr>
<td>🕒</td>
<td>Fecha de vencimiento</td>
</tr>
<tr>
<td>🗼</td>
<td>Fabricante</td>
</tr>
<tr>
<td>⚠️</td>
<td>Precaución</td>
</tr>
<tr>
<td>📜</td>
<td>Nota</td>
</tr>
<tr>
<td>📕</td>
<td>Versión</td>
</tr>
</tbody>
</table>
Notas:
Notas:
Notas:
always a drop ahead.