Istruzioni per l'uso

RealStar®
BKV PCR Kit 1.0

02/2018 IT
RealStar®

BKV PCR Kit 1.0

Per uso con

m2000rt (Abbott Diagnostics)
Mx 3005P™ QPCR System (Stratagene)
VERSANT® kPCR Molecular System AD (Siemens Healthcare)
ABI Prism® 7500 SDS (Applied Biosystems)
ABI Prism® 7500 Fast SDS (Applied Biosystems)
Rotor-Gene® 6000 (Corbett Research)
Rotor-Gene® Q5/6 plex Platform (QIAGEN)
CFX96™ Real-Time PCR Detection System (Bio-Rad)
CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)
LightCycler® 480 Instrument II (Roche)

altona Diagnostics GmbH • Mörkenstr. 12 • D-22767 Hamburg
RealStar® BKV PCR Kit 1.0

Contenuto

1. **Uso previsto** ... 6
2. **Componenti del kit** .. 6
3. **Conservazione** ... 6
4. **Materiale e dispositivi richiesti e non forniti** .. 7
5. **Informazioni generali** ... 7
6. **Descrizione del prodotto** ... 8
 6.1 Strumenti per PCR in tempo reale ... 10
 6.2 Tipi di campioni ... 11
7. **Avvertenze e precauzioni** .. 11
8. **Procedura** ... 13
 8.1 Preparazione del campione ... 13
 8.2 Preparazione della Master Mix ... 14
 8.3 Preparazione della reazione .. 16
9. **Programmazione dello strumento PCR in tempo reale** 17
 9.1 Impostazioni ... 17
 9.2 Sonde fluorescenti (coloranti) ... 17
 9.3 Profilo termico e acquisizione dei coloranti .. 18
10. **Analisi dei dati** ... 18
 10.1 Validità dei test diagnosticici ... 19
 10.1.1 Test diagnostico valido (qualitativo) ... 19
 10.1.2 Test diagnostico invalido (qualitativo) ... 19
 10.1.3 Test diagnostico valido (quantitativo) ... 20
 10.1.4 Test diagnostico invalido (quantitativo) ... 20
 10.2 Interpretazione dei risultati .. 21
10.2.1 Analisi qualitativa ... 21
10.2.2 Analisi quantitativa ... 21
11. Dati di performance .. 23
 11.1 Sensibilità analitica .. 23
 11.2 Specificità analitica ... 24
 11.3 Range lineare .. 24
 11.4 Precisione .. 26
12. Limitazioni ... 27
13. Controllo di qualità ... 28
14. Assistenza tecnica ... 28
15. Letteratura ... 28
16. Marchi e brevetti ... 29
17. Spiegazione dei simboli ... 30
1. **Uso previsto**

Il RealStar® BKV PCR Kit 1.0 è un test diagnostico *in vitro*, basato sulla tecnologia PCR in tempo reale per il rilevamento e la quantificazione del DNA specifico di virus BK (BKV).

2. **Componenti del kit**

<table>
<thead>
<tr>
<th>Colore coperchio</th>
<th>Componente</th>
<th>Numero di fiale</th>
<th>Volume [µl/fiale]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blu</td>
<td>Master A</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Viola</td>
<td>Master B</td>
<td>8</td>
<td>180</td>
</tr>
<tr>
<td>Verde</td>
<td>Internal Control</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Rosso</td>
<td>QS1-4*</td>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>Bianco</td>
<td>Water (PCR grade)</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

* Il RealStar® BKV PCR Kit 1.0 contiene Standard di quantificazione (QS) a quattro diverse concentrazioni (vedere il capitolo 6. Descrizione del prodotto)

Internal Control (IC) = Controllo interno
Water (PCR grade) = Acqua (testata per PCR)

3. **Conservazione**

- Il RealStar® BKV PCR Kit 1.0 viene spedito in ghiaccio secco. I componenti del kit devono arrivare congelati. Se uno o più componenti non sono congelati al momento della ricezione o se le provette sono state danneggiate durante la spedizione, contattare altona Diagnostics GmbH per assistenza.
- Tutti i componenti devono essere conservati tra -25°C e -15°C dopo l'arrivo.
- Evitare lo scongelamento e il congelamento ripetuti (più di due volte) dei reagenti Master, poiché ciò potrebbe influire sulle prestazioni del test. I reagenti devono essere congelati in aliquote, in caso di utilizzo intermittente.
- La conservazione tra +2°C e +8°C non deve superare un periodo di due ore.
- Proteggere il Master A e il Master B dalla luce.
4. Materiale e dispositivi richiesti e non forniti

- Strumento PCR in tempo reale appropriato (vedere il capitolo 6.1 Strumenti PCR in tempo reale)
- Sistema o kit di estrazione di acidi nucleici appropriato (vedere il capitolo 8.1 Preparazione del campione)
- Centrifuga da banco con rotore per provette di reazione da 2 ml
- Centrifuga con rotore per piastre per microtitolazione, se si utilizzano piastre di reazione a 96 pozzetti
- Vortex mixer
- Piastre di reazione o provette di reazione appropriate a 96 pozzetti con materiale di chiusura (ottico) corrispondente
- Pipette (regolabili)
- Puntali con filtro (monouso)
- Guanti senza polvere (monouso)

NOTA
Assicurarsi che tutti gli strumenti utilizzati siano stati installati, calibrati, controllati e sottoposti a manutenzione secondo le istruzioni e le raccomandazioni del produttore.

NOTA
Si consiglia di utilizzare il rotore a 72 pozzetti con le appropriate provette di reazione da 0,1 ml, se si utilizza il Rotor-Gene® 6000 (Corbett Research) o il Rotor-Gene® Q 5/6 plex (QIAGEN).

5. Informazioni generali

La famiglia dei Polyomaviridae è costituita da almeno 16 membri, che infettano diverse specie di mammiferi. Due di essi, polyomavirus BK (BKV, virus BK) e polyomavirus JC (JCV, virus JC) stabiliscono infezioni ubiquitarie nell'essere umano in tutto il mondo.
I polyomavirus sono piccoli virus a forma di icosaedro, senza pericapside, con un DNA superavvolto a doppio filamento di circa 5000 coppie di basi (bp). I polyomavirus umani condividono il 70% circa della sequenza con il Simian virus 40 (SV40). Nonostante questa elevata omologia nella sequenza, i polyomavirus presentano una serie limitata di ospiti con un comportamento biologico e patogenesi ben distinte.

Le infezioni primarie da BKV si presentano generalmente nella prima infanzia e sono tipicamente subcliniche, seguite da una persistenza che dura tutta la vita. Le cellule epiteliali di rene, uretere e vescica sono state identificate come tipi cellulari predominanti infettati in modo persistente da BKV. Mentre nei soggetti immunocompetenti le infezioni da polyomavirus restano inapparenti, la riattivazione di BKV e/o JCV in associazione a immunosoppressione può causare patologie gravi. La riattivazione di BKV è maggiormente comune nei pazienti sottoposti a trapianto di midollo osseo e rene, causando rispettivamente cistite emorragica (HC) e nefropatia polyomavirus-associata (PVAN).

6. Descrizione del prodotto

Il RealStar® BKV PCR Kit 1.0 è un test diagnostico in vitro, basato sulla tecnologia PCR in tempo reale per il rilevamento e la quantificazione del DNA specifico di virus BK (BKV).

Il test include un sistema di amplificazione eterologa (controllo interno) per identificare la possibile inibizione della PCR e per confermare l’integrità dei reagenti del kit.

La tecnologia PCR in tempo reale utilizza la reazione a catena della polimerasi (PCR) per l’amplificazione di sequenze target specifiche e sonde target specifiche per la rilevazione del DNA amplificato. Le sonde sono marcate con un reporter fluorescente (fluoroforo) ed un quencher.

Le sonde specifiche per il DNA di BKV sono marcate con il fluoroforo FAM™. La sonda specifica per il controllo interno (IC) è marcata con il fluoroforo JOE™.
L’uso di sonde marcate con coloranti distinguibili consente il rilevamento in parallelo del DNA specifico di BKV, nonché il rilevamento del controllo interno nei corrispondenti canali di rivelazione dello strumento PCR in tempo reale.

Il test comprende due processi in un’unica provetta:

- Amplificazione per PCR del DNA target e del controllo interno
- Rilevamento simultaneo di ampliconi da PCR mediante sonde marcate con colorante fluorescente

Il RealStar® BKV PCR Kit 1.0 è composto da:

- Master A
- Master B
- Internal Control
- QS1-4*
- Water (PCR grade)

* Standard di quantificazione (QS) in quattro concentrazioni diverse

 Internal Control = Controllo interno
 Water (PCR grade) = Acqua (testata per PCR)

Master A e Master B contengono tutti i componenti (tampone per PCR, DNA polimerasi, sali di magnesio, primers e sonde) per consentire l’amplificazione mediata da PCR e il rilevamento del DNA specifico di BKV e del controllo interno in una singola reazione.

Gli Standard di quantificazione contengono concentrazioni standardizzate di DNA specifico di BKV. Questi Standard di quantificazione sono stati calibrati rispetto al 1° Standard Internazionale dell’OMS sulle tecniche di amplificazione degli acidi nucleici (NAT) per il virus BK (codice NIBSC 14/212). Gli Standard di quantificazione possono essere utilizzati singolarmente come controlli positivi o insieme per generare una curva standard, che può essere utilizzata per determinare la concentrazione di DNA specifico di BKV in un campione.
Gli standard di quantificazione hanno le seguenti concentrazioni:

<table>
<thead>
<tr>
<th>Standard di quantificazione</th>
<th>Concentrazione [UI/µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS1</td>
<td>1,00E+04</td>
</tr>
<tr>
<td>QS2</td>
<td>1,00E+03</td>
</tr>
<tr>
<td>QS3</td>
<td>1,00E+02</td>
</tr>
<tr>
<td>QS4</td>
<td>1,00E+01</td>
</tr>
</tbody>
</table>

6.1 Strumenti per PCR in tempo reale

Il RealStar® BKV PCR Kit 1.0 è stato sviluppato e validato per essere utilizzato con i seguenti strumenti di PCR in tempo reale:

- m2000rt (Abbott Diagnostics)
- Mx 3005P™ QPCR System (Stratagene)
- VERSANT® kPCR Molecular System AD (Siemens Healthcare)
- ABI Prism® 7500 SDS (Applied Biosystems)
- ABI Prism® 7500 Fast SDS (Applied Biosystems)
- Rotor-Gene® 6000 (Corbett Research)
- Rotor-Gene® Q5/6 plex Platform (QIAGEN)
- CFX96™ Real-Time PCR Detection System (Bio-Rad)
- CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)
- LightCycler® 480 Instrument II (Roche)
6.2 Tipi di campioni

I seguenti tipi di campione sono stati validati con RealStar® BKV PCR Kit 1.0:

- Plasma umano EDTA
- Urina umana

Se si applica un'appropriata procedura di estrazione degli acidi nucleici, è possibile utilizzare ulteriori tipi di campione insieme al kit RealStar® BKV PCR Kit 1.0. L'idoneità della procedura di estrazione degli acidi nucleici deve essere validata dall'utente.

7. Avvertenze e precauzioni

Leggere attentamente le istruzioni per l’uso prima di utilizzare il prodotto.

- Prima del primo utilizzo, controllare il prodotto e i suoi componenti per:
 - Integrità
 - Completezza rispetto a numero, tipo e riempimento (vedere il capitolo 2. Componenti del kit)
 - Etichette corrette
 - Congelamento all'arrivo

- L'utilizzo di questo prodotto è limitato al personale appositamente istruito e addestrato nelle tecniche di PCR in tempo reale e procedure diagnostiche in vitro.

- I campioni devono essere sempre trattati come infettivi e/o pericolosi secondo le procedure di laboratorio sicure.

- Indossare guanti protettivi monouso senza polvere, un camice da laboratorio e una protezione per gli occhi durante la manipolazione dei campioni.

- Evitare la contaminazione microbica e nucleasica (DNasi/RNasi) dei campioni e dei componenti del kit.

- Utilizzare sempre puntali per pipette monouso privi di DNasi/RNasi.
• Indossare sempre guanti protettivi usa e getta senza polvere quando si maneggiano i componenti del kit.
• Utilizzare aree di lavoro separate e isolate per (i) preparazione del campione, (ii) impostazione della reazione e (iii) attività di amplificazione/rilevazione. Il flusso di lavoro in laboratorio dovrebbe procedere in modo unidirezionale. Indossare sempre guanti monouso in ogni area e cambiarli prima di entrare in un’altra area.
• Dedicare materiali di consumo e attrezzature alle aree di lavoro separate e non spostarle da un’area all’altra.
• Conservare il materiale positivo e/o potenzialmente positivo separato da tutti gli altri componenti del kit.
• Non aprire le provette/piastre di reazione dopo l’amplificazione, per evitare contaminazione con ampliconi.
• Controlli aggiuntivi possono essere testati secondo le linee guida o i requisiti delle normative locali, statali e/o federali o delle organizzazioni di accreditamento.
• Non sterilizzare in autoclave le provette dopo la PCR, poiché ciò non distrugge gli acidi nucleici amplificati e rischierà di contaminare l’area di laboratorio.
• Non utilizzare componenti del kit che hanno superato la data di scadenza.
• Eliminare i rifiuti dei campioni e del test in base alle normative di sicurezza locali.
8. Procedura

8.1 Preparazione del campione

Il DNA estratto è il materiale di partenza per il RealStar® BKV PCR Kit 1.0.

La qualità del DNA estratto ha un profondo impatto sulle prestazioni dell'intero saggio. É necessario garantire che il sistema utilizzato per l'estrazione dell'acido nucleico sia compatibile con la tecnologia PCR in tempo reale. I seguenti kit e sistemi sono indicati per l'estrazione dell'acido nucleico:

- QIAamp® DNA Mini Kit (QIAGEN)
- QIAamp® Viral RNA Mini Kit (QIAGEN)
- QIAsymphony® (QIAGEN)
- NucliSENS® easyMag® (bioMérieux)
- MagNA Pure 96 System (Roche)
- m2000sp (Abbott)
- Maxwell® 16 IVD Instrument (Promega)
- VERSANT® kPCR Molecular System SP (Siemens Healthcare)

Potrebbero anche essere appropriati sistemi e kit di estrazione alternativi. L'idoneità della procedura di estrazione dell'acido nucleico per l'uso con RealStar® BKV PCR Kit 1.0 deve essere convalidata dall'utente.

Se si utilizza una procedura di preparazione del campione basata su colonna di centrifugazione che include tamponi di lavaggio contenenti etanolo, si consiglia di effettuare un'ulteriore fase di centrifugazione per 10 minuti a circa 17000 x g (≈ 13000 rpm), usando una nuova provetta di raccolta, prima dell'eluizione dell'acido nucleico.
ATTENZIONE

Se il sistema di preparazione dei campioni utilizza tamponi di lavaggio contenenti etanolo, assicurarsi di eliminare eventuali tracce di etanolo prima dell'eluizione dell’acido nucleico. L’etanolo è un forte inibitore della PCR in tempo reale.

ATTENZIONE

L’uso dell’RNA carrier è fondamentale per l’efficienza di estrazione e la stabilità dell’acido nucleico estratto.

Per ricevere ulteriori informazioni e assistenza tecnica riguardanti pre-trattamento e preparazione dei campioni contattare il nostro servizio di assistenza tecnica (vedere il capitolo 14. Assistenza tecnica).

8.2 Preparazione della Master Mix

Tutti i reagenti e i campioni devono essere completamente scongelati, miscelati (mediante pipettaggio o passaggio delicato su un agitatore vortex) e centrifugati brevemente prima dell'uso.

Il RealStar® BKV PCR Kit 1.0 contiene un controllo interno (IC) eterologo, che può essere utilizzato o come controllo di inibizione della PCR o come controllo della procedura di preparazione del campione (estrazione dell'acido nucleico) e come controllo di inibizione della PCR.
- Se l'IC viene utilizzato come controllo di inibizione della PCR, ma non come controllo della procedura di preparazione del campione, impostare la Master Mix secondo il seguente schema:

<table>
<thead>
<tr>
<th>Numero di reazioni (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Controllo interno</td>
<td>1 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>21 µl</td>
<td>252 µl</td>
</tr>
</tbody>
</table>

- Se l'IC viene utilizzato come controllo per la procedura di preparazione del campione e come controllo di inibizione della PCR, aggiungere l'IC durante la procedura di estrazione dell'acido nucleico.

- Indipendentemente dal metodo/sistema utilizzato per l'estrazione dell'acido nucleico, l'IC non deve essere aggiunto direttamente al campione. L'IC deve essere sempre aggiunto alla miscela campione/tampone di lisi. Il volume dell'IC da aggiungere dipende sempre e soltanto dal volume di eluizione. Rappresenta il 10% del volume di eluizione. Ad esempio, se l'acido nucleico deve essere eluito in 60 µl di tampone di eluizione o acqua, devono essere aggiunti 6 µl di IC per campione nella miscela campione/tampone di lisi.

- Se l'IC è stato aggiunto durante la procedura di preparazione del campione, preparare la Master Mix secondo il seguente schema:

<table>
<thead>
<tr>
<th>Numero di reazioni (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>20 µl</td>
<td>240 µl</td>
</tr>
</tbody>
</table>

ATTENZIONE

Se l'IC (controllo interno) è stato aggiunto durante la procedura di preparazione del campione, almeno il controllo negativo deve includere l'IC.
ATTENZIONE

Indipendentemente dal metodo/sistema utilizzato per l'estrazione dell'acido nucleico, non aggiungere mai l'IC direttamente al campione.

8.3 Preparazione della reazione

► Pipettare 20 µl di Master Mix in ciascuno dei pozetti richiesti di un'appropriata piastra di reazione ottica a 96 pozetti o di un'appropriata provetta di reazione ottica.

► Aggiungere 10 µl di campione (eluato dall'estrazione dell'acido nucleico) o 10 µl del controllo (Standard di quantificazione, controllo positivo o negativo).

<table>
<thead>
<tr>
<th>Preparazione della reazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix</td>
</tr>
<tr>
<td>Campione o controllo</td>
</tr>
<tr>
<td>Volume totale</td>
</tr>
</tbody>
</table>

► Assicurarsi che almeno un controllo positivo (QS) e almeno un controllo negativo siano utilizzati ad ogni esecuzione del saggio.

► Ai fini della quantificazione, tutti gli standard di quantificazione (da QS1 a QS4) dovrebbero essere utilizzati.

► Miscelare accuratamente i campioni e i controlli con la Master Mix pipettando su e giù.

► Chiudere la piastra di reazione a 96 pozetti con tappi o pellicola adesiva ottica adeguati e le provette di reazione con tappi appropriati.

► Centrifugare la piastra di reazione a 96 pozetti in una centrifuga con rotore per piastra di microtitolazione per 30 secondi a circa 1.000 x g (~ 3.000 rpm).
9. Programmazione dello strumento PCR in tempo reale

Per informazioni di base sull'impostazione e la programmazione dei diversi strumenti PCR in tempo reale, consultare il manuale utente del rispettivo strumento.

Per istruzioni dettagliate sulla programmazione dell'utilizzo del RealStar® BKV PCR Kit 1.0 su specifici strumenti PCR in tempo reale, contattare il nostro supporto tecnico (vedere il capitolo 14. Assistenza tecnica).

9.1 Impostazioni

► Definire i seguenti parametri:

<table>
<thead>
<tr>
<th>Impostazioni</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume di reazione</td>
<td>30 µl</td>
</tr>
<tr>
<td>Velocità di rampa</td>
<td>Predefinito</td>
</tr>
<tr>
<td>Riferimento passivo</td>
<td>ROX™</td>
</tr>
</tbody>
</table>

9.2 Sonde fluorescenti (coloranti)

► Definire le seguenti sonde fluorescenti (coloranti):

<table>
<thead>
<tr>
<th>Target</th>
<th>Nome sonda</th>
<th>Reporter</th>
<th>Quencher</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKV specifico DNA</td>
<td>BKV</td>
<td>FAM™</td>
<td>(Nessuno)</td>
</tr>
<tr>
<td>Controllo interno (IC)</td>
<td>IC</td>
<td>JOE™</td>
<td>(Nessuno)</td>
</tr>
</tbody>
</table>
9.3 Profilo termico e acquisizione dei coloranti

► Impostare il profilo della temperatura e l'acquisizione del colorante:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Ripetizioni ciclo</th>
<th>Acquisizione</th>
<th>Temperatura [°C]</th>
<th>Durata [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturazione</td>
<td>Mantenimento</td>
<td>1</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td>Amplificazione</td>
<td>Ciclaggio</td>
<td>45</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>si</td>
<td>58</td>
</tr>
</tbody>
</table>

10. Analisi dei dati

Per informazioni di base sull’analisi dei dati su specifici strumenti PCR in tempo reale, consultare il manuale utente del rispettivo strumento.

Per istruzioni dettagliate sull’analisi dei dati generati con RealStar® BKV PCR Kit 1.0 su diversi strumenti PCR in tempo reale, contattare il nostro supporto tecnico (vedere il capitolo 14. Assistenza tecnica).
10.1 Validità dei test diagnostici

10.1.1 Test diagnostico valido (qualitativo)

Un test diagnostico qualitativo è valido se sono soddisfatte le seguenti condizioni di controllo:

<table>
<thead>
<tr>
<th>Controllo positivo (QS)</th>
<th>FAM™</th>
<th>JOE™</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>+/-</td>
</tr>
</tbody>
</table>

* La presenza o l'assenza di un segnale nel canale JOE™ non è rilevante per la validità dell'esecuzione del test.

10.1.2 Test diagnostico invalido (qualitativo)

Un test diagnostico qualitativo non è valido, (i) se l'esecuzione non è stata completata o (ii) se una delle condizioni di controllo per un test diagnostico valido non è soddisfatta.

In caso di test diagnostici non validi ripetere i test utilizzando gli acidi nucleici purificati rimanenti o ricominciare dai campioni originali.
10.1.3 Test diagnostico valido (quantitativo)

Un test diagnostico quantitativo è valido se sono soddisfatte tutte le condizioni di controllo per l'esecuzione di un test diagnostico qualitativo valido [vedere il capitolo 10.1.1 Test diagnostico valido (qualitativo)]. I risultati della quantificazione sono validi se la curva standard generata raggiunge il seguente valore del parametro di controllo:

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore valido</th>
</tr>
</thead>
<tbody>
<tr>
<td>R square (R^2)</td>
<td>$\geq 0,98$</td>
</tr>
</tbody>
</table>

NOTA

Non tutti gli strumenti PCR in tempo reale visualizzano il valore di (R^2). Per informazioni dettagliate, consultare il manuale dell'utente del rispettivo strumento.

10.1.4 Test diagnostico invalido (quantitativo)

Un test diagnostico quantitativo non è valido, (i) se il test non è stato completato o (ii) se non sono soddisfatte le condizioni di controllo per un test diagnostico quantitativo valido.

In caso di test diagnostici non validi ripetere i test utilizzando gli acidi nucleici purificati rimanenti o ricominciare dai campioni originali.
10.2 Interpretazione dei risultati

10.2.1 Analisi qualitativa

<table>
<thead>
<tr>
<th>Canale</th>
<th>Interpretazione dei risultati</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™</td>
<td>JOE™</td>
</tr>
<tr>
<td>+</td>
<td>+*</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Il rilevamento del controllo interno nel canale di rilevamento JOE™ non è necessario in caso di risultati positivi nel canale di rilevamento FAM™. Un elevato carico di DNA di BKV nel campione può portare a segnali del controllo interno ridotti o assenti.

10.2.2 Analisi quantitativa

Il RealStar® BKV PCR Kit 1.0 include quattro standard di quantificazione (QS). Per generare una curva standard per l'analisi quantitativa, questi devono essere definiti come standard con concentrazioni appropriate (vedere il capitolo 6. Descrizione del prodotto). Utilizzando standard di concentrazioni note è possibile generare una curva standard per l'analisi quantitativa.

\[
C_t = m \cdot \log (N_0) + b
\]

\[C_t = \text{ Ciclo soglia}\]
\[m = \text{ Pendenza}\]
\[N_0 = \text{ Concentrazione iniziale}\]
\[b = \text{ Intercetta}\]

È possibile quindi determinare la concentrazione non nota di campioni positivi a seconda della curva standard.
Figura 1: Standard di quantificazione (nero), un campione positivo (rosso) e un negativo (blu) visualizzati in diagramma di amplificazione [A] e analisi della curva standard [B]

NOTA

La concentrazione del "Campione" è visualizzata in UI/µl e si riferisce alla concentrazione nell'eluato.

Per determinare la carica virale del campione originale, è necessario applicare la seguente formula:

\[
\text{Carica virale (campionone) [UI/ml]} = \frac{\text{Volume (Eluato) [µl]} \cdot \text{Carica virale (Eluato) [UI/µl]}}{\text{Volume iniziale campione [ml]}}
\]
11. Dati di performance

La valutazione delle performance di RealStar® BKV PCR Kit 1.0 è stata effettuata usando DNA specifico quantificato di BKV isolato da ceppi Dunlop di BKV (numero ATCC®: 45025).

11.1 Sensibilità analitica

La sensibilità analitica del RealStar® BKV PCR Kit 1.0 è definita come la concentrazione (copie/µl dell'eluato) di molecole di DNA specifico di BKV che possono essere rilevate con un tasso di positività del 95%. La sensibilità analitica è stata determinata dall'analisi delle diluizioni seriali di DNA quantificato di BKV.

Tab. 1: Risultati della PCR utilizzati per il calcolo della sensibilità analitica rispetto al rilevamento del DNA specifico di BKV

<table>
<thead>
<tr>
<th>Conc. input [copie/µl]</th>
<th>Numero di replicati</th>
<th>Numero di positivi</th>
<th>Hit Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,032</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1,276</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>0,404</td>
<td>24</td>
<td>22</td>
<td>92</td>
</tr>
<tr>
<td>0,128</td>
<td>24</td>
<td>15</td>
<td>63</td>
</tr>
<tr>
<td>0,040</td>
<td>24</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>0,013</td>
<td>24</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>0,004</td>
<td>24</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0,001</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

La sensibilità analitica del RealStar® BKV PCR Kit 1.0 è stata determinata dall’analisi Probit:

- Per il rilevamento del DNA specifico di BKV, la sensibilità analitica è di 0,712 copie/µl [intervallo di confidenza del 95% (IC): 0,404 - 1,693 copie/µl]
11.2 Specificità analitica

La specificità analitica del RealStar® BKV PCR Kit 1.0 è assicurata dall’accurata selezione degli oligonucleotidi (primer e sonde). Gli oligonucleotidi sono stati controllati mediante analisi comparativa delle sequenze rispetto a sequenze pubblicamente disponibili per garantire che tutti i genotipi BKV pertinenti fossero rilevati.

La specificità analitica di RealStar® BKV PCR Kit 1.0 è stata valutata analizzando un pannello di RNA/DNA genomico estratto da altri polyomavirus o da altri patogeni significativi nei pazienti immunocompromessi.

Il RealStar® BKV PCR Kit 1.0 non ha reagito in modo incrociato con nessuno dei seguenti patogeni:

- Citomegalovirus
- Virus Epstein-Barr
- Virus epatite A
- Virus epatite B
- Virus epatite C
- Virus herpes simplex 1
- Virus herpes simplex 2
- Herpesvirus umano 6A
- Herpesvirus umano 6B
- Herpesvirus umano 7
- Herpesvirus umano 8
- Virus dell’immunodeficienza umana 1
- Virus JC
- Simian virus 40
- Virus della varicella-zoster

11.3 Range lineare

Il range lineare del RealStar® BKV PCR Kit 1.0 è stato valutato analizzando una serie di diluizioni logaritmiche di DNA specifico del ceppo Dunlop del virus BK utilizzando concentrazioni che vanno da 1,00E+09 a 1,00E+00 copie/µl. Sono stati analizzati almeno otto replicati per diluizione.
Il range lineare del RealStar® BKV PCR Kit 1.0 si estende lungo un intervallo di almeno nove grandezze.
11.4 Precisione

La precisione del RealStar® BKV PCR Kit 1.0 è stata determinata come variabilità intra-dosaggio (variabilità all'interno di un esperimento), variabilità inter-dosaggio (variabilità tra esperimenti diversi) e variabilità inter-lotto (variabilità tra lotti di produzione diversi). La variabilità totale è stata calcolata combinando le tre analisi.

I dati di variabilità sono espressi in termini di deviazione standard e coefficiente di variazione. I dati si basano sull’analisi di quantificazione delle concentrazioni definite di DNA specifico di BKV e sul valore del ciclo di soglia (C_t) in termini di controllo interno. Sono stati analizzati almeno sei replicati per campione per la variabilità intra-dosaggio, inter-dosaggio e inter-lotto.

Tab. 2: Dati di precisione per il rilevamento del DNA specifico di BKV

<table>
<thead>
<tr>
<th>BKV</th>
<th>Conc. media [copie/µl]</th>
<th>Deviazione standard</th>
<th>Coefficiente di variazione [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilità intra-dosaggio</td>
<td>158,05</td>
<td>5,90</td>
<td>3,73</td>
</tr>
<tr>
<td>Variabilità inter-dosaggio</td>
<td>161,64</td>
<td>6,37</td>
<td>3,94</td>
</tr>
<tr>
<td>Variabilità inter-lotto</td>
<td>160,34</td>
<td>6,46</td>
<td>4,03</td>
</tr>
<tr>
<td>Variabilità totale</td>
<td>160,44</td>
<td>6,29</td>
<td>3,92</td>
</tr>
</tbody>
</table>

Tab. 3: Dati di precisione per il rilevamento del controllo interno

<table>
<thead>
<tr>
<th>Controllo interno</th>
<th>Ciclo soglia medio (C_t)</th>
<th>Deviazione standard</th>
<th>Coefficiente di variazione [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilità intra-dosaggio</td>
<td>26,91</td>
<td>0,04</td>
<td>0,15</td>
</tr>
<tr>
<td>Variabilità inter-dosaggio</td>
<td>26,87</td>
<td>0,05</td>
<td>0,20</td>
</tr>
<tr>
<td>Variabilità inter-lotto</td>
<td>26,85</td>
<td>0,09</td>
<td>0,33</td>
</tr>
<tr>
<td>Variabilità totale</td>
<td>26,85</td>
<td>0,08</td>
<td>0,28</td>
</tr>
</tbody>
</table>
12. Limitazioni

• Per risultati ottimali è richiesta la rigorosa osservanza delle istruzioni per l'uso.
• L'utilizzo di questo prodotto è limitato al personale appositamente istruito e addestrato nelle tecniche di PCR in tempo reale e procedure diagnostiche in vitro.
• La buona pratica di laboratorio è essenziale per la corretta esecuzione di questo test. È necessario prestare la massima attenzione per preservare la purezza dei componenti del kit e le impostazioni di reazione. Tutti i reagenti devono essere attentamente monitorati per impurità e contaminazione. Eventuali reagenti sospetti devono essere eliminati.
• Per l'esecuzione ottimale di questo test sono necessarie adeguate procedure di raccolta, trasporto, conservazione ed elaborazione dei campioni.
• Questo test non deve essere utilizzato direttamente sul campione. Prima di utilizzare questo test, devono essere condotti appropriati metodi di estrazione dell'acido nucleico.
• La presenza di inibitori della PCR (ad es. eparina) può causare risultati insufficienti, risultati falsi negativi o non validi.
• Le potenziali mutazioni all'interno delle regioni target del genoma BKV coperte dai primer e/o dalle sonde utilizzate nel kit possono causare una sottoquantificazione e/o il mancato rilevamento della presenza dei patogeni.
• Come con qualsiasi test diagnostico, i risultati del RealStar® BKV PCR Kit 1.0 devono essere interpretati in considerazione di tutti i risultati clinici e di laboratorio.
13. Controllo di qualità

In conformità con il sistema di gestione della qualità certificato ISO EN 13485 di altona Diagnostics GmbH, ogni lotto di RealStar® BKV PCR Kit 1.0 è testato in base a specifiche prestabilite per garantire una qualità costante del prodotto.

14. Assistenza tecnica

Per l’assistenza ai clienti, si prega di contattare il nostro supporto tecnico:

- e-mail: support@altona-diagnostics.com
- telefono: +49-(0)40-5480676-0

15. Letteratura

16. Marchi e brevetti

RealStar® (altona Diagnostics); ABI Prism® (Applied Biosystems); ATCC® (American Type Culture Collection); CFX96™ (Bio-Rad); Cy® (GE Healthcare); FAM™, JOE™, ROX™ (Life Technologies); LightCycler® (Roche); SmartCycler® (Cepheid); Maxwell® (Promega); Mx 3005P™ (Stratagene); NucliSENS®, easyMag® (bioMérieux); Rotor-Gene®, QIAamp®, MinElute®, QIAsymphony® (QIAGEN); VERSANT® (Siemens Healthcare).

Nomi registrati, marchi, ecc. utilizzati in questo documento, anche se non specificamente contrassegnati come tali, non devono essere considerati non protetti dalla legge.

Il RealStar® BKV PCR Kit 1.0 è un kit diagnostico marcato CE secondo la direttiva diagnostica in vitro europea 98/79/CE.

Prodotto non concesso in licenza con Health Canada e non approvato o autorizzato dalla FDA.

Non disponibile in tutti i Paesi.

© 2018 altona Diagnostics GmbH; tutti i diritti riservati.
17. Spiegazione dei simboli

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Spiegazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Dispositivo diagnostico in vitro</td>
</tr>
<tr>
<td>LOT</td>
<td>Lotto</td>
</tr>
<tr>
<td>CAP</td>
<td>Colore del tappo</td>
</tr>
<tr>
<td>REF</td>
<td>Numero di catalogo</td>
</tr>
<tr>
<td>CONT</td>
<td>Indice</td>
</tr>
<tr>
<td>NUM</td>
<td>Numero</td>
</tr>
<tr>
<td>COMP</td>
<td>Componente</td>
</tr>
<tr>
<td>GTIN</td>
<td>Global Trade Identification Number</td>
</tr>
<tr>
<td>i</td>
<td>Istruzioni per l’uso</td>
</tr>
<tr>
<td>Σ</td>
<td>Contiene sufficienti per “n” test / reazioni (rxns)</td>
</tr>
<tr>
<td>℃</td>
<td>Limite di temperatura</td>
</tr>
<tr>
<td>·</td>
<td>Da usare entro</td>
</tr>
<tr>
<td>🏞️</td>
<td>Fornitore</td>
</tr>
<tr>
<td>🚨</td>
<td>Attenzione</td>
</tr>
<tr>
<td>i</td>
<td>Note</td>
</tr>
<tr>
<td>📖</td>
<td>Versione</td>
</tr>
</tbody>
</table>
Note:
Note:
Note:
Note:
always a drop ahead.