Istruzioni per l'uso

RealStar®
Parvovirus B19 PCR Kit 1.0

01/2017 IT
RealStar®

Parvovirus B19 PCR Kit 1.0

Per uso con

m2000rt (Abbott Diagnostics)
Mx 3005P™ QPCR System (Stratagene)
VERSANT® kPCR Molecular System AD (Siemens Healthcare)
ABI Prism® 7500 SDS (Applied Biosystems)
ABI Prism® 7500 Fast SDS (Applied Biosystems)
Rotor-Gene® 6000 (Corbett Research)
Rotor-Gene® Q5/6 plex Platform (QIAGEN)
CFX96™ Real-Time PCR Detection System (Bio-Rad)
LightCycler® 480 Instrument II (Roche)
Contenuto

1. Uso previsto .. 6
2. Componenti del kit .. 6
3. Conservazione .. 7
4. Materiale e dispositivi richiesti e non forniti ... 8
5. Informazioni generali ... 9
6. Descrizione del prodotto .. 9
 6.1 Strumenti per PCR in tempo reale ... 11
 6.2 Tipi di campioni .. 12
7. Avvertenze e precauzioni .. 12
8. Procedura ... 14
 8.1 Preparazione del campione .. 14
 8.2 Preparazione della Master Mix ... 15
 8.3 Preparazione della reazione .. 17
9. Programmazione dello strumento PCR in tempo reale ... 18
 9.1 Impostazioni ... 18
 9.2 Sonde fluorescenti (coloranti) ... 18
 9.3 Profilo termico e acquisizione dei coloranti ... 19
10. Analisi dei dati ... 19
 10.1 Validità dei test diagnostici .. 20
 10.1.1 Test diagnostico valido (qualitativo) .. 20
 10.1.2 Test diagnostico invalido (qualitativo) ... 20
 10.1.3 Test diagnostico valido (quantitativo) ... 21
 10.1.4 Test diagnostico invalido (quantitativo) ... 21
 10.2 Interpretazione dei risultati .. 22
1. **Uso previsto**

Il RealStar® Parvovirus B19 PCR Kit 1.0 è un test diagnostico *in vitro*, basato sulla tecnologia PCR in tempo reale per il rilevamento e la quantificazione del DNA specifico di parvovirus B19.

2. **Componenti del kit**

<table>
<thead>
<tr>
<th>Colore coperchio</th>
<th>Componente</th>
<th>Numero di fiale</th>
<th>Volume [µl/fiale]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blu</td>
<td>Master A</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>Viola</td>
<td>Master B</td>
<td>8</td>
<td>180</td>
</tr>
<tr>
<td>Verde</td>
<td>Internal Control</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Rosso</td>
<td>QS1-4*</td>
<td>4</td>
<td>250</td>
</tr>
<tr>
<td>Bianco</td>
<td>Water (PCR grade)</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

* Il RealStar® Parvovirus B19 PCR Kit 1.0 contiene Standard di quantificazione (QS) a quattro diverse concentrazioni (vedere il capitolo 6. Descrizione del prodotto)

 - Internal Control (IC) = Controllo interno
 - Water (PCR grade) = Acqua (testata per PCR)
3. Conservazione

- Il RealStar® Parvovirus B19 PCR Kit 1.0 viene spedito in ghiaccio secco. I componenti del kit devono arrivare congelati. Se uno o più componenti non sono congelati al momento della ricezione o se le provette sono state danneggiate durante la spedizione, contattare altona Diagnostics GmbH per assistenza.
- Tutti i componenti devono essere conservati tra -25°C e -15°C dopo l'arrivo.
- Evitare lo scongelamento e il congelamento ripetuti (più di due volte) dei reagenti Master, poiché ciò potrebbe influire sulle prestazioni del test. I reagenti devono essere congelati in aliquote, in caso di utilizzo intermittente.
- La conservazione tra +2°C e +8°C non deve superare un periodo di due ore.
- Proteggere il Master A e il Master B dalla luce.
4. Materiale e dispositivi richiesti e non forniti

• Strumento PCR in tempo reale appropriato (vedere il capitolo 6.1 Strumenti PCR in tempo reale)
• Sistema o kit di estrazione di acidi nucleici appropriato (vedere il capitolo 8.1 Preparazione del campione)
• Centrifuga da banco con rotore per provette di reazione da 2 ml
• Centrifuga con rotore per piastre per microtitolazione, se si utilizzano piastre di reazione a 96 pozzetti
• Vortex mixer
• Piastre di reazione o provette di reazione appropriate a 96 pozzetti con materiale di chiusura (ottico) corrispondente
• Pipette (regolabili)
• Puntali con filtro (monouso)
• Guanti senza polvere (monouso)

NOTA

Assicurarsi che tutti gli strumenti utilizzati siano stati installati, calibrati, controllati e sottoposti a manutenzione secondo le istruzioni e le raccomandazioni del produttore.

NOTA

Si consiglia di utilizzare il rotore a 72 pozzetti con le appropriate provette di reazione da 0,1 ml, se si utilizza il Rotor-Gene® 6000 (Corbett Research) o il Rotor-Gene® Q 5/6 plex (QIAGEN).
5. Informazioni generali

Il parvovirus umano B19 (parvovirus B19), detto anche Eritrovirus B19, è stato il primo virus umano noto nella famiglia dei Parvovirinae e nel genere degli Eritrovirus. Trattasi di un virus con capsido icosaedrico senza envelope che contiene un DNA lineare in singola copia.

Il parvovirus B19 causa un’eruzione cutanea pediatrica detta quinta malattia o eritema infettivo, con un aspetto comunemente definito come “a guance schiaffeggiate”. Il parvovirus B19 è una causa rilevante di crisi aplastica nei pazienti con anemia emolitica. È possibile osservare diverse complicazioni fetali, in particolare a seguito delle infezioni materni durante il secondo e il terzo trimestre di gravidanza.

Sono stati identificati tre distinti genotipi (Genotipo I-III) di parvovirus umano B19, che presentano una variazione dell’identità nucleotidica fino al 15%. Sulla base dell’analisi delle sequenze e delle proprietà biologiche, il Comitato Internazionale sulla tassonomia dei virus ha classificato i rappresentanti dei tre genotipi come specie di parvovirus umano B19. In Europa, i requisiti normativi specificano che i pool plasmatici usati nella produzione di immunoglobulina anti-D e plasma trattato per l’inattivazione virale siano analizzati per i livelli di DNA di parvovirus B19. Tali pool plasmatici non devono superare una concentrazione di soglia di 10 UI/μl per il DNA di parvovirus B19, come definito da OMS IS (2° codice IS NIBSC 99/802).

6. Descrizione del prodotto

Il RealStar® Parvovirus B19 PCR Kit 1.0 è un test diagnostico in vitro, basato sulla tecnologia PCR in tempo reale per il rilevamento e la quantificazione del DNA specifico di parvovirus B19.

Il test include un sistema di amplificazione eterologa (controllo interno) per identificare la possibile inibizione della PCR e per confermare l’integrità dei reagenti del kit.
La tecnologia PCR in tempo reale utilizza la reazione a catena della polimerasi (PCR) per l’amplificazione di sequenze target specifiche e sonde target specifiche per la rilevazione del DNA amplificato. Le sonde sono marcate con un reporter fluorescente (fluoroforo) ed un quencher,

Le sonde specifiche per il DNA di parvovirus B19 sono marcate con il fluoroforo FAM™. La sonda specifica per il controllo interno (IC) è marcata con il fluoroforo JOE™.

L’uso di sonde marcate con coloranti distinguibili consente il rilevamento in parallelo di DNA specifico di parvovirus B19, nonché il rilevamento del controllo interno nei corrispondenti canali di rivelazione dello strumento PCR in tempo reale.

Il test comprende due processi in un’unica provetta:

• Amplificazione PCR del DNA target e controllo interno
• Rilevamento simultaneo di ampliconi PCR mediante sonde marcate con colorante fluorescente

Il RealStar® Parvovirus B19 PCR Kit 1.0 è composto da:

• Master A
• Master B
• Internal Control
• QS1-4*
• Water (PCR grade)

* Standard di quantificazione (QS) in quattro concentrazioni diverse
Internal Control = Controllo interno
Water (PCR grade) = Acqua (testata per PCR)

Master A e Master B contengono tutti i componenti (tampone per PCR, DNA polimerasi, sali di magnesio, primers e sonde) per consentire l’amplificazione mediata da PCR e il rilevamento di DNA specifico di parvovirus B19 e del controllo interno in una singola reazione.

Gli Standard di quantificazione hanno le seguenti concentrazioni:

<table>
<thead>
<tr>
<th>Standard di quantificazione</th>
<th>Concentrazione [UI/µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QS1</td>
<td>1,00E+04</td>
</tr>
<tr>
<td>QS2</td>
<td>1,00E+03</td>
</tr>
<tr>
<td>QS3</td>
<td>1,00E+02</td>
</tr>
<tr>
<td>QS4</td>
<td>1,00E+01</td>
</tr>
</tbody>
</table>

6.1 Strumenti per PCR in tempo reale

Il RealStar® Parvovirus B19 PCR Kit 1.0 è stato sviluppato e validato per essere utilizzato con i seguenti strumenti PCR in tempo reale:

- m2000rt (Abbott Diagnostics)
- Mx 3005P™ QPCR System (Stratagene)
- VERSANT® kPCR Molecular System AD (Siemens Healthcare)
- ABI Prism® 7500 SDS (Applied Biosystems)
- ABI Prism® 7500 Fast SDS (Applied Biosystems)
- Rotor-Gene® 6000 (Corbett Research)
- Rotor-Gene® Q5/6 plex Platform (QIAGEN)
- CFX96™ Real-Time PCR Detection System (Bio-Rad)
- LightCycler® 480 Instrument II (Roche)
6.2 Tipi di campioni

I seguenti tipi di campione sono stati validati con RealStar® Parvovirus B19 PCR Kit 1.0:

- Plasma umano EDTA

Se si applica un'appropriata procedura di estrazione degli acidi nucleici, è possibile utilizzare ulteriori tipi di campione insieme al kit RealStar® Parvovirus B19 PCR Kit 1.0. L'idoneità della procedura di estrazione degli acidi nucleici deve essere validata dall'utente.

7. Avvertenze e precauzioni

Leggere attentamente le istruzioni per l’uso prima di utilizzare il prodotto.

- Prima del primo utilizzo, controllare il prodotto e i suoi componenti per:
 - Integrità
 - Completezza rispetto a numero, tipo e riempimento (vedere il capitolo 2. Componenti del kit)
 - Etichette corrette
 - Congelamento all'arrivo

- L’utilizzo di questo prodotto è limitato al personale appositamente istruito e addestrato nelle tecniche di PCR in tempo reale e procedure diagnostiche in vitro.

- I campioni devono essere sempre trattati come infettivi e/o pericolosi secondo le procedure di laboratorio sicure.

- Indossare guanti protettivi monouso senza polvere, un camice da laboratorio e una protezione per gli occhi durante la manipolazione dei campioni.

- Evitare la contaminazione microbica e nucleasica (DNasi/RNasi) dei campioni e dei componenti del kit.

- Utilizzare sempre puntali per pipette monouso privi di DNasi/RNasi.
• Indossare sempre guanti protettivi usa e getta senza polvere quando si maneggiano i componenti del kit.
• Utilizzare aree di lavoro separate e isolate per (i) preparazione del campione, (ii) impostazione della reazione e (iii) attività di amplificazione/rilevazione. Il flusso di lavoro in laboratorio dovrebbe procedere in modo unidirezionale. Indossare sempre guanti monouso in ogni area e cambiarli prima di entrare in un’altra area.
• Dedicare materiali di consumo e attrezzature alle aree di lavoro separate e non spostarle da un'area all'altra.
• Conservare il materiale positivo e/o potenzialmente positivo separato da tutti gli altri componenti del kit.
• Non aprire le provette/piastre di reazione dopo l'amplificazione, per evitare contaminazione con ampliconi.
• Controlli aggiuntivi possono essere testati secondo le linee guida o i requisiti delle normative locali, statali e/o federali o delle organizzazioni di accreditamento.
• Non sterilizzare in autoclave le provette dopo la PCR, poiché ciò non distrugge gli acidi nucleici amplificati e rischierà di contaminare l’area di laboratorio.
• Non utilizzare componenti del kit che hanno superato la data di scadenza.
• Eliminare i rifiuti dei campioni e del test in base alle normative di sicurezza locali.
8. Procedura

8.1 Preparazione del campione

Il DNA estratto è il materiale di partenza per il RealStar® Parvovirus B19 PCR Kit 1.0.

La qualità del DNA estratto ha un profondo impatto sulle prestazioni dell'intero saggio. È necessario garantire che il sistema utilizzato per l'estrazione dell'acido nucleico sia compatibile con la tecnologia PCR in tempo reale. I seguenti kit e sistemi sono adatti per l'estrazione dell'acido nucleico:

- QIAamp® DNA Mini Kit (QIAGEN)
- QIAsymphony® (QIAGEN)
- NucliSSENS® easyMag® (bioMérieux)
- MagNA Pure 96 System (Roche)
- m2000sp (Abbott)
- Maxwell® 16 IVD Instrument (Promega)
- VERSANT® kPCR Molecular System SP (Siemens Healthcare)

Potrebbero anche essere appropriati sistemi e kit di estrazione alternativi. L'idoneità della procedura di estrazione dell'acido nucleico per l'uso con RealStar® Parvovirus B19 PCR Kit 1.0 deve essere convalidata dall'utente.

Se si utilizza una procedura di preparazione del campione basata su colonna di centrifugazione che include tamponi di lavaggio contenenti etanolo, si consiglia di effettuare un'ulteriore fase di centrifugazione per 10 minuti a circa 17000 x g (~ 13000 rpm), usando una nuova provetta di raccolta, prima dell'eluizione dell'acido nucleico.
ATTENZIONE

Se il sistema di preparazione dei campioni utilizza tamponi di lavaggio contenenti etanolo, assicurarsi di eliminare eventuali tracce di etanolo prima dell’eluizione dell’acido nucleico. L’etanolo è un forte inibitore della PCR in tempo reale.

ATTENZIONE

L'uso dell'RNA carrier è fondamentale per l'efficienza di estrazione e la stabilità dell'acido nucleico estratto.

Per ricevere ulteriori informazioni e assistenza tecnica riguardanti pre-trattamento e preparazione dei campioni contattare il nostro servizio di assistenza tecnica (vedere il capitolo 14. Assistenza tecnica).

8.2 Preparazione della Master Mix

Tutti i reagenti e i campioni devono essere completamente scongelati, miscelati (mediante pipettaggio o passaggio delicato su un agitatore vortex) e centrifugati brevemente prima dell'uso.

Il RealStar® Parvovirus B19 PCR Kit 1.0 contiene un controllo interno (IC) eterologo, che può essere utilizzato o come controllo di inibizione della PCR o come controllo della procedura di preparazione del campione (estrazione dell'acido nucleico) e come controllo di inibizione della PCR.
Se l'IC viene utilizzato come controllo di inibizione della PCR, ma non come controllo della procedura di preparazione del campione, impostare la Master Mix secondo il seguente schema:

<table>
<thead>
<tr>
<th>Numero di reazioni (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Controllo interno</td>
<td>1 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>21 µl</td>
<td>252 µl</td>
</tr>
</tbody>
</table>

Se l'IC viene utilizzato come controllo per la procedura di preparazione del campione e come controllo di inibizione della PCR, aggiungere l'IC durante la procedura di estrazione dell'acido nucleico.

Indipendentemente dal metodo/sistema utilizzato per l'estrazione dell'acido nucleico, l'IC **non deve** essere aggiunto direttamente al campione. L'IC deve essere sempre aggiunto alla miscela campione/tampone di lisi. Il volume dell'IC da aggiungere dipende sempre e soltanto dal volume di eluizione. Rappresenta il 10% del volume di eluizione. Ad esempio, se l'acido nucleico deve essere eluito in 60 µl di tampone di eluizione o acqua, devono essere aggiunti 6 µl di IC per campione nella miscela campione/tampone di lisi.

Se l'IC è stato aggiunto durante la procedura di preparazione del campione, preparare la Master Mix secondo il seguente schema:

<table>
<thead>
<tr>
<th>Numero di reazioni (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Volume Master Mix</td>
<td>20 µl</td>
<td>240 µl</td>
</tr>
</tbody>
</table>

ATTENZIONE

Se l'IC (controllo interno) è stato aggiunto durante la procedura di preparazione del campione, almeno il controllo negativo deve includere l'IC.
8.3 Preparazione della reazione

► Pipettare 20 µl di Master Mix in ciascuno dei pozzetti richiesti di un'appropriate piastra di reazione ottica a 96 pozzetti o di un'appropriate provetta di reazione ottica.

► Aggiungere 10 µl di campione (eluato dall'estrazione dell'acido nucleico) o 10 µl del controllo (Standard di quantificazione, controllo positivo o negativo).

<table>
<thead>
<tr>
<th>Preparazione della reazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix</td>
</tr>
<tr>
<td>Campione o controllo</td>
</tr>
<tr>
<td>Volume totale</td>
</tr>
</tbody>
</table>

► Assicurarsi che almeno un controllo positivo (QS) e almeno un controllo negativo siano utilizzati ad ogni esecuzione del saggio.

► Ai fini della quantificazione, tutti gli standard di quantificazione (da QS1 a QS4) dovrebbero essere utilizzati.

► Miscelare accuratamente i campioni e i controlli con la Master Mix pipettando su e giù.

► Chiudere la piastra di reazione a 96 pozzetti con tappi o pellicola adesiva ottica adeguati e le provette di reazione con tappi appropriati.

► Centrifugare la piastra di reazione a 96 pozzetti in una centrifuga con rotore per piastra di microtitolazione per 30 secondi a circa 1.000 x g (~ 3.000 rpm).
9. Programmazione dello strumento PCR in tempo reale

Per informazioni di base sull'impostazione e la programmazione dei diversi strumenti PCR in tempo reale, consultare il manuale utente del rispettivo strumento.

Per istruzioni dettagliate sulla programmazione dell'utilizzo del RealStar® Parvovirus B19 PCR Kit 1.0 su specifici strumenti PCR in tempo reale, contattare il nostro supporto tecnico (vedere il capitolo 14. Assistenza tecnica).

9.1 Impostazioni

► Definire i seguenti parametri:

<table>
<thead>
<tr>
<th>Impostazioni</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume di reazione</td>
<td>30 µl</td>
</tr>
<tr>
<td>Velocità di rampa</td>
<td>Predefinito</td>
</tr>
<tr>
<td>Riferimento passivo</td>
<td>ROX™</td>
</tr>
</tbody>
</table>

9.2 Sonde fluorescenti (coloranti)

► Definire le seguenti sonde fluorescenti (coloranti):

<table>
<thead>
<tr>
<th>Target</th>
<th>Nome sonda</th>
<th>Reporter</th>
<th>Quencher</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA specifico parvovirus B19</td>
<td>parvovirus B19</td>
<td>FAM™</td>
<td>(Nessuno)</td>
</tr>
<tr>
<td>Controllo interno (IC)</td>
<td>IC</td>
<td>JOE™</td>
<td>(Nessuno)</td>
</tr>
</tbody>
</table>
9.3 Profilo termico e acquisizione dei coloranti

Impostare il profilo della temperatura e l’acquisizione del colorante:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Ripetizioni ciclo</th>
<th>Acquisizione</th>
<th>Temperatura [°C]</th>
<th>Tempo [min:sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturazione</td>
<td>Mantenimento</td>
<td>1</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td>Amplificazione</td>
<td>Ciclaggio</td>
<td>45</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>si</td>
<td>58</td>
</tr>
</tbody>
</table>

10. Analisi dei dati

Per informazioni di base sull’analisi dei dati su specifici strumenti PCR in tempo reale, consultare il manuale utente del rispettivo strumento.

Per istruzioni dettagliate sull’analisi dei dati generati con RealStar® Parvovirus B19 PCR Kit 1.0 su diversi strumenti PCR in tempo reale, contattare il nostro supporto tecnico (vedere il capitolo 14. Assistenza tecnica).
10.1 Validità dei test diagnostici

10.1.1 Test diagnostico valido (qualitativo)

Un test diagnostico qualitativo è valido se sono soddisfatte le seguenti condizioni di controllo:

<table>
<thead>
<tr>
<th>Controllo</th>
<th>Canale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAM™</td>
</tr>
<tr>
<td>Controllo positivo (QS)</td>
<td>+</td>
</tr>
<tr>
<td>Controllo negativo</td>
<td>−</td>
</tr>
</tbody>
</table>

* La presenza o l'assenza di un segnale nel canale JOE™ non è rilevante per la validità dell'esecuzione del test.

10.1.2 Test diagnostico invalido (qualitativo)

Un test diagnostico qualitativo non è valido, (i) se l'esecuzione non è stata completata o (ii) se una delle condizioni di controllo per un test diagnostico valido non è soddisfatta.

In caso di test diagnostici non validi ripetere i test utilizzando gli acidi nucleici purificati rimanenti o ricominciare dai campioni originali.
10.1.3 Test diagnostico valido (quantitativo)

Un test diagnostico **quantitativo** è *valido* se sono soddisfatte tutte le condizioni di controllo per l'esecuzione di un test diagnostico **qualitativo valido** [vedere il capitolo 10.1.1 Test diagnostico valido (qualitativo)]. I risultati della **quantificazione** sono **validi** se la **curva standard** generata raggiunge il seguente valore del parametro di controllo:

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore valido</th>
</tr>
</thead>
<tbody>
<tr>
<td>R square (R^2)</td>
<td>≥ 0.98</td>
</tr>
</tbody>
</table>

NOTA

Non tutti gli strumenti PCR in tempo reale visualizzano il valore di (R^2). Per informazioni dettagliate, consultare il manuale dell'utente del rispettivo strumento.

10.1.4 Test diagnostico invalido (quantitativo)

Un test diagnostico **quantitativo non è valido**, (i) se il test non è stato completato o (ii) se non sono soddisfatte le condizioni di controllo per un test diagnostico **quantitativo valido**.

In caso di test diagnostici **non validi** ripetere i test utilizzando gli acidi nucleici purificati rimanenti o ricominciare dai campioni originali.
10.2 Interpretazione dei risultati

10.2.1 Analisi qualitativa

<table>
<thead>
<tr>
<th>Canale</th>
<th>Interpretazione dei risultati</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAM™</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>+*</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Il rilevamento del controllo interno nel canale di rilevamento JOE™ non è necessario in caso di risultati positivi né nel canale di rilevamento FAM™. Un elevato carico di DNA parvovirus B19 nel campione può portare a segnali del controllo interno ridotti o assenti.

10.2.2 Analisi quantitativa

Il RealStar® Parvovirus B19 PCR Kit 1.0 include quattro standard di quantificazione (QS). Per generare una curva standard per l'analisi quantitativa, questi devono essere definiti come standard con concentrazioni appropriate (vedere il capitolo 6. Descrizione del prodotto). Utilizzando standard di concentrazioni note è possibile generare una curva standard per l'analisi quantitativa.

\[
C_t = m \cdot \log (N_0) + b
\]

- **C_t** = Ciclo soglia
- **m** = Pendenza
- **N_0** = Concentrazione iniziale
- **b** = Intercetta

È possibile quindi determinare la concentrazione non nota di campioni positivi a seconda della curva standard.
NOTA

La concentrazione del "Campione" è visualizzata in UI/µl e si riferisce alla concentrazione nell'eluato.

Per determinare la carica virale del campione originale, è necessario applicare la seguente formula:

\[
\text{Carica virale (campione) [UI/ml]} = \frac{\text{Volume (Eluato) [µl]} \cdot \text{Carica virale (Eluato) [UI/µl]}}{\text{Volume iniziale campione [ml]}}
\]
11. Dati di performance

La valutazione delle prestazioni di RealStar® Parvovirus B19 PCR Kit 1.0 è stata effettuata utilizzando DNA quantificati di parvovirus B19 calibrati rispetto al 2° Standard Internazionale OMS per il parvovirus B19 (codice NIBSC: 99/802).

11.1 Sensibilità analitica

La sensibilità analitica del RealStar® Parvovirus B19 PCR Kit 1.0 è definita come la concentrazione (UI/µl dell'eluato) di molecole di DNA specifico di parvovirus B19 che possono essere rilevate con un tasso di positività del 95%. La sensibilità analitica è stata determinata dall'analisi delle diluizioni seriali di DNA quantificato di parvovirus B19.

Tab. 1: Risultati della PCR utilizzati per il calcolo della sensibilità analitica rispetto al rilevamento del DNA specifico di parvovirus B19

<table>
<thead>
<tr>
<th>Conc. in ingresso [UI/µl]</th>
<th>Numero di replicati</th>
<th>Numero di positivi</th>
<th>Tasso di successo [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>16</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>3,162</td>
<td>16</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>16</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>0,316</td>
<td>16</td>
<td>15</td>
<td>94</td>
</tr>
<tr>
<td>0,210</td>
<td>8</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>0,140</td>
<td>8</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>0,090</td>
<td>8</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>0,060</td>
<td>8</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>0,030</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,010</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
La sensibilità analitica del RealStar® Parvovirus B19 PCR Kit 1.0 è stata determinata dall'analisi Probit:

- Per il rilevamento del DNA specifico di parvovirus B19, la sensibilità analitica è di 0,41 UI/μl [Intervallo di confidenza del 95% (IC): 0,27-0,90 UI/μl]

11.2 Specificità analitica

La specificità analitica del RealStar® Parvovirus B19 PCR Kit 1.0 è assicurata dall'accurata selezione degli oligonucleotidi (primer e sonde). Gli oligonucleotidi sono stati controllati mediante analisi comparativa delle sequenze rispetto a sequenze pubblicamente disponibili per garantire che tutti i genotipi parvovirus B19 pertinenti fossero rilevati.

La specificità analitica di RealStar® Parvovirus B19 PCR Kit 1.0 è stata valutata analizzando un pannello di RNA/DNA genomico estratto da altri virus a trasmissione ematica o da altri patogeni significativi nei pazienti immunocompromessi.

Il RealStar® Parvovirus B19 PCR Kit 1.0 non ha reagito in modo incrociato con nessuno dei seguenti patogeni:

- Virus BK
- Citomegalovirus
- Virus Epstein-Barr
- Virus dell’epatite A
- Virus dell’epatite B
- Virus dell’epatite C
- Virus herpes simplex 1
- Virus herpes simplex 2
- Herpesvirus umano 6A
- Herpesvirus umano 6B
- Herpesvirus umano 7
- Herpesvirus umano 8
- Virus dell'immunodeficienza umana 1
- Virus JC
- Virus Varicella-zoster
11.3 Range lineare

Il range lineare del RealStar® Parvovirus B19 PCR Kit 1.0 è stato valutato analizzando una serie di diluizioni logaritmiche di DNA di parvovirus B19 utilizzando concentrazioni che vanno da 1,00E+09 a 1,00E+00 UI/µl. Ogni diluizione è stata analizzata in otto replicati.

Figura 2: Curve di amplificazione [A] e regressione lineare [B] di una serie di diluizioni analizzata di DNA specifico di parvovirus B19
Il range lineare del RealStar® Parvovirus B19 PCR Kit 1.0 si estende lungo un intervallo di almeno otto grandezze.

11.4 Precisione

La precisione del RealStar® Parvovirus B19 PCR Kit 1.0 è stata determinata come variabilità intra-dosaggio (variabilità all'interno di un esperimento), variabilità inter-dosaggio (variabilità tra esperimenti diversi) e variabilità inter-lotto (variabilità tra lotti di produzione diversi). La variabilità totale è stata calcolata combinando le tre analisi.

I dati di variabilità sono espressi in termini di deviazione standard e coefficiente di variazione. I dati si basano sull’analisi di quantificazione delle concentrazioni definite di DNA specifico di parvovirus B19 e sul valore del ciclo di soglia (C_t) in termini di controllo interno. Sono stati analizzati almeno sei replicati per campione per la variabilità intra-dosaggio, inter-dosaggio e inter-lotto.

Tab. 2: Dati di precisione per il rilevamento di DNA specifico di parvovirus B19

<table>
<thead>
<tr>
<th>virus B19</th>
<th>Conc. media [UI/µl]</th>
<th>Deviazione standard</th>
<th>Coefficiente di variazione [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilità intra-dosaggio</td>
<td>219,36</td>
<td>5,42</td>
<td>2,47</td>
</tr>
<tr>
<td>Variabilità inter-dosaggio</td>
<td>215,66</td>
<td>8,67</td>
<td>4,02</td>
</tr>
<tr>
<td>Variabilità inter-lotto</td>
<td>211,65</td>
<td>10,47</td>
<td>4,95</td>
</tr>
<tr>
<td>Variabilità totale</td>
<td>211,75</td>
<td>10,07</td>
<td>4,75</td>
</tr>
</tbody>
</table>
Tab. 3: Dati di precisione per il rilevamento del controllo interno

<table>
<thead>
<tr>
<th>Controllo interno</th>
<th>Ciclo soglia medio (C<sub>t</sub>)</th>
<th>Deviazione standard</th>
<th>Coefficiente di variazione [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilità intra-dosaggio</td>
<td>24,90</td>
<td>0,09</td>
<td>0,36</td>
</tr>
<tr>
<td>Variabilità inter-dosaggio</td>
<td>24,75</td>
<td>0,13</td>
<td>0,54</td>
</tr>
<tr>
<td>Variabilità inter-lotto</td>
<td>24,86</td>
<td>0,11</td>
<td>0,46</td>
</tr>
<tr>
<td>Variabilità totale</td>
<td>24,80</td>
<td>0,14</td>
<td>0,56</td>
</tr>
</tbody>
</table>

11.5 Valutazione diagnostica

La specificità e sensibilità diagnostica del RealStar[®] Parvovirus B19 PCR Kit 1.0 è stata valutata analizzando 115 campioni. Gli acidi nucleici sono stati estratti con il QIAamp[®] DNA Mini Kit (QIAGEN). I campioni sono stati analizzati su un ABI Prism[®] 7500 SDS (Applied Biosystems) e su un Rotor-Gene[®] 6000 (Corbett Research).

Tab. 4: Risultati della valutazione diagnostica di RealStar[®] Parvovirus B19 PCR Kit 1.0
12. Limitazioni

- Per risultati ottimali è richiesta la rigorosa osservanza delle istruzioni per l'uso.
- L'utilizzo di questo prodotto è limitato al personale appositamente istruito e addestrato nelle tecniche di PCR in tempo reale e procedure diagnostiche in vitro.
- La buona pratica di laboratorio è essenziale per la corretta esecuzione di questo test. È necessario prestare la massima attenzione per preservare la purezza dei componenti del kit e le impostazioni di reazione. Tutti i reagenti devono essere attentamente monitorati per impurità e contaminazione. Eventuali reagenti sospetti devono essere eliminati.
- Per l'esecuzione ottimale di questo test sono necessarie adeguate procedure di raccolta, trasporto, conservazione ed elaborazione dei campioni.
- Questo test non deve essere utilizzato direttamente sul campione. Prima di utilizzare questo test, devono essere condotti appropriati metodi di estrazione dell'acido nucleico.
- La presenza di inibitori della PCR (ad es. eparina) può causare risultati insufficienti, risultati falsi negativi o non validi.
- Le potenziali mutazioni all'interno delle regioni target del genoma parvovirus B19 coperte dai primer e/o dalle sonde utilizzate nel kit possono causare una sottoquantificazione e/o il mancato rilevamento della presenza dei patogeni.
- Come con qualsiasi test diagnostico, i risultati del RealStar® Parvovirus B19 PCR Kit 1.0 devono essere interpretati in considerazione di tutti i risultati clinici e di laboratorio.
13. Controllo di qualità

In conformità con il sistema di gestione della qualità certificato ISO EN 13485 di altona Diagnostics GmbH, ogni lotto di RealStar® Parvovirus B19 PCR Kit 1.0 è testato in base a specifiche prestabili per garantire una qualità costante del prodotto.

14. Assistenza tecnica

Per l’assistenza ai clienti, si prega di contattare il nostro supporto tecnico:

- e-mail: support@altona-diagnostics.com
- telefono: +49-(0)40-5480676-0

15. Letteratura

16. Marchi e brevetti

RealStar® (altona Diagnostics); ABI Prism® (Applied Biosystems); ATCC® (American Type Culture Collection); CFX96™ (Bio-Rad); Cy® (GE Healthcare); FAM™, JOE™, ROX™ (Life Technologies); LightCycler® (Roche); SmartCycler® (Cepheid); Maxwell® (Promega); Mx 3005P™ (Stratagene); NucliSENS®, easyMag® (bioMérieux); Rotor-Gene®, QIAamp®, MinElute®, QIAsymphony® (QIAGEN); VERSANT® (Siemens Healthcare).

Nomi registrati, marchi, ecc. utilizzati in questo documento, anche se non specificamente contrassegnati come tali, non devono essere considerati non protetti dalla legge.

Il RealStar® Parvovirus B19 PCR Kit 1.0 è un kit diagnostico marcato CE secondo la direttiva diagnostica in vitro europea 98/79/CE.

Prodotto non concesso in licenza con Health Canada e non approvato o autorizzato dalla FDA.

Non disponibile in tutti i Paesi.

© 2017 altona Diagnostics GmbH; tutti i diritti riservati.
17. Spiegazione dei simboli

<table>
<thead>
<tr>
<th>Simbolo</th>
<th>Spiegazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Dispositivo diagnostico in vitro</td>
</tr>
<tr>
<td>LOT</td>
<td>Lotto</td>
</tr>
<tr>
<td>CAP</td>
<td>Colore del tappo</td>
</tr>
<tr>
<td>REF</td>
<td>Numero di catalogo</td>
</tr>
<tr>
<td>CONT</td>
<td>Indice</td>
</tr>
<tr>
<td>NUM</td>
<td>Numero</td>
</tr>
<tr>
<td>COMP</td>
<td>Componente</td>
</tr>
<tr>
<td>GTIN</td>
<td>Global Trade Identification Number</td>
</tr>
<tr>
<td>i</td>
<td>Istruzioni per l’uso</td>
</tr>
<tr>
<td>Σ</td>
<td>Contiene sufficienti per “n” test / reazioni (rxns)</td>
</tr>
<tr>
<td>🕐</td>
<td>Limite di temperatura</td>
</tr>
<tr>
<td>🏀</td>
<td>Da usare entro</td>
</tr>
<tr>
<td>🏛</td>
<td>Fornitore</td>
</tr>
<tr>
<td>⚠️</td>
<td>Attenzione</td>
</tr>
<tr>
<td>📚</td>
<td>Note</td>
</tr>
<tr>
<td>📖</td>
<td>Versione</td>
</tr>
</tbody>
</table>
Note:
Note:
Note:
always a drop ahead.