Instruções de Utilização

RealStar®
Malaria Screen & Type PCR Kit 1.0

11/2021 PT
RealStar®

Malaria Screen & Type PCR Kit 1.0

Para utilização com

Mx 3005P™ QPCR System (Stratagene)
VERSANT® kPCR Molecular System AD (Siemens Healthcare)
ABI Prism® 7500 SDS (Applied Biosystems)
ABI Prism® 7500 Fast SDS (Applied Biosystems)
Rotor-Gene® 6000 (Corbett Research)
Rotor-Gene® Q5/6 plex Platform (QIAGEN)
CFX96™ Real-Time PCR Detection System (Bio-Rad)
CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)
LightCycler® 480 Instrument II (Roche)
Conteúdo

1. Utilização Prevista ... 6
2. Componentes do Kit ... 6
3. Armazenamento .. 7
4. Materiais e Dispositivos requeridos mas não fornecidos ... 8
5. Informação de Base .. 9
6. Descrição do Produto .. 11
 6.1 Instrumento de PCR em tempo real .. 14
7. Avisos e Precauções ... 14
8. Procedimento .. 16
 8.1 Preparação de Amostras .. 16
 8.2 Preparação da Master Mix ... 17
 8.3 Preparação da Reação ... 19
9. Programação dos instrumentos de PCR em tempo real .. 20
 9.1 Definições .. 20
 9.2 Detetores de fluorescência (corantes) .. 20
 9.3 Perfil de Temperatura e Aquisição de Corante ... 21
10. Análise de Dados ... 21
 10.1 Validade dos Processamentos do Teste de Diagnóstico ... 22
 10.1.1 Processamento de Teste de Diagnóstico Válido (qualitativo) 22
 10.1.2 Processamento de Teste Inválido (qualitativo) ... 22
 10.2 Interpretação dos Resultados ... 23
 10.2.1 Análise Qualitativa .. 23
11. Avaliação do Desempenho .. 24
11.1 Sensibilidade Analítica .. 24
11.2 Especificidade Analítica .. 28
11.3 Precisão ... 29
11.4 Avaliação de Diagnóstico ... 31
12. Limitações ... 34
13. Controlo de Qualidade ... 35
14. Apoio Técnico ... 35
15. Bibliografia .. 35
16. Marcas Comerciais e Isenções de Responsabilidade 36
17. Explicação de Símbolos .. 37
1. Utilização Prevista

O RealStar® Malaria Screen & Type PCR Kit 1.0 constitui uma análise de diagnóstico in vitro, baseada na tecnologia PCR em tempo real, para a deteção qualitativa e diferenciação do ADN agente patogénico humano das espécies de *Plasmodium Plasmodium malariae*, *Plasmodium ovale*, *Plasmodium knowlesi*, *Plasmodium vivax* e *Plasmodium falciparum*.

2. Componentes do Kit

O kit contém dois ensaios PCR diferentes com 48 reações cada um. Inclui dois Controlos Positivos diferentes: um para o sistema de deteção e amplificação específica do *Plasmodium (P.) knowlesi*, *P. malariae* e *P. ovale* e outro para o sistema de deteção e amplificação específica do *P. falciparum* e *P. vivax*.

Tabela 1: Componentes do Kit

<table>
<thead>
<tr>
<th>Cor da tampa</th>
<th>Componente</th>
<th>Número de tubos</th>
<th>Volume [µl/tubo]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azul</td>
<td>Master A Pk/Pm/ Po(^1)</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Azul luz</td>
<td>Master A Pf/Pv(^2)</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Violeta</td>
<td>Master B Pk/Pm/ Po(^1)</td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>Violeta luz</td>
<td>Master B Pf/Pv(^2)</td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>Verde</td>
<td>Internal Control</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>Vermelho</td>
<td>Positive Control Pk/Pm/Po(^1)</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>Laranja</td>
<td>Positive Control Pf/Pv(^2)</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>Branco</td>
<td>Water (PCR grade)</td>
<td>1</td>
<td>500</td>
</tr>
</tbody>
</table>

\(^1\) Pk - *Plasmodium knowlesi*, Pm - *Plasmodium malariae*, Po - *Plasmodium ovale*

\(^2\) Pf - *Plasmodium falciparum*, Pv - *Plasmodium vivax*

Internal Control = Controlo Interno

Positive Control = Controlo Positivo

Water (PCR grade) = Água de PCR
3. Armazenamento

- O RealStar® Malaria Screen & Type PCR Kit 1.0 é enviado em gelo seco. Os componentes do kit devem chegar congelados. Se um ou mais componentes não estiverem congelados no momento da receção, ou se algum tubo tiver ficado comprometido durante o envio, contacte a altona Diagnostics GmbH para obter assistência.
- Todos os componentes devem ser conservados entre -25 °C e 15 °C depois do momento da entrega.
- Deve-se evitar o congelamento e descongelamento repetido de reagentes Master (mais do que duas vezes), pois isto poderá afetar o desempenho do ensaio. Os reagentes devem ser congelados em alíquotas se a sua utilização prevista for intermitente.
- O armazenamento entre +2 °C e +8 °C não deve exceder um período de 2 horas.
- Proteger o Master A e o Master B da luz.
4. Materiais e Dispositivos requeridos mas não fornecidos

- Instrumento de PCR em tempo real adequado (consulte o capítulo 6.1. Instrumentos de PCR em tempo real)
- Sistema ou kit de extração de ácido nucleico adequado (ver capítulo 8.1 Preparação de Amostras)
- Centrifuga de bancada com um rotor para tubos de reação de 2 ml
- Centrifuga com um rotor para placas de microtitulação, aquando da utilização de placas de reação com 96 poços
- Agitador vortex
- Placas de reação com 96 poços ou tubos de reação adequados com material de fecho (óticos) correspondente
- Pipetas (ajustáveis)
- Pontas de pipeta com filtros (descartáveis)
- Luvas sem pó (descartáveis)

NOTA

Certifique-se de que todos os instrumentos utilizados foram instalados, calibrados, verificados e mantidos de acordo com as instruções e recomendações do fabricante.

NOTA

É altamente recomendada a utilização do rotor de 72 poços com tubos de reação de 0,1 ml adequados, se utilizando o Rotor-Gene® 6000 (Corbett Research) ou o Rotor-Gene® Q 5/6 plex (QIAGEN).
5. Informação de Base

A malária é uma doença transmitida por vetor, resultado de uma infecção causada por protozoários. Os parasitas do gênero *Plasmodium* são transmitidos aos seus hospedeiros vertebrados durante a refeição de sangue de um mosquito fêmea do gênero *Anopheles*, infetado. O ciclo de vida dos parasitas envolve uma mudança de hospedeiro do artrópode para o hospedeiro vertebrado e é bastante complexo, mas pode ser dividido em 3 fases principais. Estas fases baseiam-se no estágio de mosquito do parasita, no estágio no fígado humano e no estágio no sangue humano. Há 5 espécies de *Plasmodium* patogénicas para o ser humano, nomeadamente *Plasmodium falciparum*, *Plasmodium knowlesi*, *Plasmodium ovale*, *Plasmodium vivax* e *Plasmodium malariae* [1].

A doença malária tem diferentes manifestações, dependendo da espécie de *Plasmodium* que causa a infecção. Em geral, os primeiros sintomas da malária são muito pouco específicos: febre, cefaleias, fraqueza generalizada do corpo, mialgia, arrepios, tonturas, dor abdominal, diarreia, náuseas e vômitos. *P. falciparum* e *P. knowlesi* podem causar malária grave nos seres humanos [2,3]. *P. falciparum* é responsável por uma taxa anual de casos fatais > 90 %, principalmente em crianças [2].

P. knowlesi passa por uma fase eritrocítica curta (24 horas) durante a qual se reproduz rapidamente [4]. A hiperparasitemia resultante pode conduzir a complicações potencialmente fatais como insuficiência multiorgânica ou a morte do doente. Antes do desenvolvimento de um teste baseado em PCR específico para *P. knowlesi*, era frequente o *P. knowlesi* ser erradamente diagnosticado como *P. malariae* com base nas parecenças fenotípicas ou como *P. vivax* com base nas parecenças genéticas [5].

Embora o *P. vivax* seja considerado um parasita benigno, induz manifestações clínicas incapacitantes e complicações potencialmente fatais como, por exemplo, anemia grave, trombocitopenia e paroxismos perigosos [6].
Uma infeção por *P. ovale* é frequentemente confundida com uma infeção por *P. vivax* devido à sua febre terçã. As infeções por ambas as espécies de parasitas apresentam sintomas semelhantes e são tratadas de forma semelhante, a única diferença é a potencial gravidade de uma infeção por *P. vivax*. Além do mais, as infeções por *P. ovale* e *P. vivax* são caracterizadas por recaídas debilitantes repetidas derivadas dos hipnozoítos dormentes que persistem em hepatócitos mesmo depois da eliminação dos parasitas [1].

As infeções por *P. malariae* caracterizam-se por parasitemia reduzida e uma evolução ligeira da doença.

O diagnóstico de malária por microscopia de esfregaços de sangue finos ou espessos por coloração de Giemsa é o método gold-standard [7]. Adicionalmente, são frequentemente usados testes de diagnóstico rápido e recomendados pela Organização Mundial de Saúde (OMS). No entanto, a sensibilidade e a especificidade destes métodos são grandemente limitadas e dificilmente se consegue fazer a diferenciação das espécies de *Plasmodium* com ambas as técnicas [8]. Há uma necessidade óbvia de ferramentas de diagnóstico mais sensíveis que sejam rápidas, rigorosas e permitam fazer a tipagem rigorosa das espécies de *Plasmodium*, para uma gestão e controlo eficazes da doença. As técnicas moleculares, como PCR em tempo real, são cada vez mais populares, porque são alternativas mais sensíveis, fiáveis [9,10] e fáceis de usar do que a gold-standard. Quando utilizados corretamente, os testes de diagnóstico sensíveis e específicos podem evitar um uso desnecessário de medicamentos antimaláricos e contribuem para uma gestão adequada e económica da doença.

6. Descrição do Produto

O RealStar® Malaria Screen & Type PCR Kit 1.0 constitui uma análise de diagnóstico in vitro, baseada na tecnologia PCR em tempo real, para a deteccão qualitativa e diferenciação do ADN agente patogénico humano das espécies de Plasmodium Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi, Plasmodium vivax e Plasmodium falciparum.

O kit RealStar® Malaria Screen & Type PCR Kit 1.0 é composto por dois ensaios independentes, um a atuar no ADN específico de P. ovale, P. malariae e P. knowlesi e outro a atuar no ADN específico de P. vivax e P. falciparum.

Ambos ensaios incluem um sistema de amplificação heteróloga [Internal Control (controlo interno)] para identificar possíveis inibições da PCR e para confirmar a integridade dos reagentes.
A tecnologia PCR em tempo real utiliza a reação em cadeia da polimerase (PCR) para a amplificação das sequências alvo específicas e das sondas alvo específicas para a deteção do ADN amplificado. As sondas estão marcadas com reporter fluorescente e corante quencher.

Master Mix Pk/Pm/Po: A sonda específica para o ADN do *P. knowlesi* está marcada com o fluoróforo ROX™, a sonda específica para o ADN do *P. malariae* está marcada com o fluoróforo FAM™ e a sonda específica para o ADN do *P. ovale* está marcada com o fluoróforo Cy5.

Master Mix Pf/Pv: A sonda específica para o ADN do *P. falciparum* está marcada com o fluoróforo FAM™ e a sonda específica para o ADN do *P. vivax* está marcada com o fluoróforo Cy5.

A sonda específica para o Internal Control (IC) (controlo interno) está marcada com o fluoróforo JOE™.

A utilização de sondas associada a colorações distinguidíveis permite a deteção paralela do ADN específico do *P. knowlesi*, *P. malariae*, *P. ovale*, *P. falciparum* e *P. vivax*, assim como a deteção do Internal Control (controlo interno) nos canais de deteção correspondentes do instrumento PCR em tempo real.

O teste consiste em dois processos num único tubo de ensaio:

- Amplificação de PCR do ADN alvo e do Internal Control (controlo interno)
- Deteção simultânea de amplicões de PCR por sondas marcadas com corante fluorescente
O kit RealStar® Malaria Screen & Type PCR Kit 1.0 consiste em:

- Master A Pk/Pm/Po\(^1\)
- Master A Pf/Pv\(^2\)
- Master B Pk/Pm/Po\(^1\)
- Master B Pf/Pv\(^2\)
- Internal Control
- Positive Control Pk/Pm/Po\(^1\)
- Positive Control Pf/Pv\(^2\)
- Water (PCR grade)

\(^1\) Pk - *Plasmodium knowlesi*, Pm - *Plasmodium malariae*, Po - *Plasmodium ovale*

\(^2\) Pf - *Plasmodium falciparum*, Pv - *Plasmodium vivax*

- Internal Control = Controlo Interno
- Positive Control = Controlo Positivo
- Water (PCR grade) = Água de PCR

O kit Master A e Master B Pk/Pm/Po contém todos os componentes (tampão PCR, polimerase do ADN, sais de magnésio, primers e sondas) necessários para permitir a amplificação mediada por PCR e a deteção do ADN específico do *P. knowlesi*, *P. malariae* e *P. ovale*, bem como do Internal Control (controlo interno) numa preparação de reação.

O kit Master A e Master B Pf/Pv contém todos os componentes (tampão PCR, polimerase do ADN, sais de magnésio, primers e sondas) necessários para permitir a amplificação mediada por PCR e a deteção do ADN específico do *P. falciparum* e *P. vivax*, bem como do Internal Control (controlo interno) numa preparação de reação.
6.1 Instrumento de PCR em tempo real

O kit RealStar® Malaria Screen & Type PCR Kit 1.0 foi desenvolvido e validado para ser usado com os seguintes instrumentos PCR em tempo real:

- Mx 3005P™ QPCR System (Stratagene)
- VERSANT® kPCR Molecular System AD (Siemens Healthcare)
- ABI Prism® 7500 SDS (Applied Biosystems)
- ABI Prism® 7500 Fast SDS (Applied Biosystems)
- Rotor-Gene® 6000 (Corbett Research)
- Rotor-Gene® Q5/6 plex Platform (QIAGEN)
- CFX96™ Real-Time PCR Detection System (Bio-Rad)
- CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad)
- LightCycler® 480 Instrument II (Roche)

7. Avisos e Precauções

Leia atentamente as instruções de utilização antes de usar o produto.

- Antes da primeira utilização, verifique o produto e os seus componentes quanto a:
 - Integridade
 - Integralidade com respeito ao número, tipo e enchimento (ver capítulo 2. Componentes do Kit)
 - Rotulagem correta
 - Congelamento à chegada

- A utilização deste produto está limitada a pessoal especialmente instruído e formado em técnicas de PCR em tempo real e em procedimentos de diagnóstico in vitro.

- Amostras devem ser tratadas sempre como infecciosas e/ou riscos biológicos, seguindo os procedimentos laboratoriais seguros.
• Use luvas de proteção descartáveis sem pó, uma bata de laboratório e proteção ocular sempre que manusear amostras.
• Evite a contaminação microbiana e por nuclease (DNase/RNase) das amostras e dos componentes do kit.
• Use sempre pontas de pipeta descartáveis sem DNase/RNase com barreiras de aerossol.
• Use sempre luvas de proteção descartáveis sem pó quando manusear os componentes do kit.
• Use zonas de trabalho separadas e segregadas para (i) preparação de amostras, (ii) configuração da reação e (iii) atividades de amplificação/deteção. O fluxo de trabalho no laboratório deve prosseguir de forma unidirecional. Use sempre luvas descartáveis em cada zona e troque de luvas antes de entrar numa zona diferente.
• Dedique consumíveis e equipamento a zonas de trabalho separadas e não os mude de uma zona para a outra.
• Conserve o material positivo, e/ou potencialmente positivo, separado de todos os outros componentes do kit.
• Não abra tubos/placas de reação pós amplificação, para evitar contaminação com produtos de amplificação.
• Poderão ser testados controlos adicionais de acordo com as diretrizes e ou requisitos de regulamentos locais, estaduais e/ou federais, bem como de organizações de acreditação.
• Não aplique autoclave aos tubos de reação depois da PCR, porque não irá degradar o ácido nucleico amplificado e corre-se o risco de contaminar a zona de laboratório.
• Não utilize componentes do kit que estejam fora do prazo de validade.
• Descarte a amostra e os resíduos dos ensaios cumprindo os regulamentos de segurança aplicáveis localmente.
8. Procedimento

8.1 Preparação de Amostras

O ADN extraído é o material inicial para o kit RealStar® Malaria Screen & Type PCR Kit 1.0.

A qualidade do ADN extraído tem um impacto profundo no desempenho de todo o sistema de teste. É necessário assegurar que o sistema utilizado para a extração de ácido nucleico é compatível com a tecnologia PCR em tempo real. Os seguintes kits e sistemas são adequados para extração de ácido nucleico:

- QIAamp® DNA Mini Kit (QIAGEN)
- QIAamp® DNA Blood Mini Kit (QIAGEN)
- QIAsymphony® (QIAGEN)
- NucliSENS® easyMAG® (bioMérieux)
- MagNA Pure 96 System (Roche)
- m2000sp (Abbott)
- Maxwell® 16 IVD Instrument (Promega)
- VERSANT® kPCR Molecular System SP (Siemens Healthcare)

Sistemas e kits alternativos de extracção de ácido nucleico também podem ser apropriados. A adequação do procedimento de extração de ácido nucleico para utilização com RealStar® Malaria Screen & Type PCR Kit 1.0 deve ser validada pelo utilizador.

Caso se utilize um procedimento de preparação de amostras baseado numa coluna de centrifugação incluindo tampões de lavagem contendo etanol, recomenda-se vivamente a realização de um passo de centrifugação adicional durante 1 minuto a aproximadamente 17 000 x g (~ 13 000 rpm), utilizando um novo tubo de recolha, antes da eluição do ácido nucleico.
Se o seu sistema de preparação de amostras utilizar tampões de lavagem contendo etanol, certifique-se de que elimina quaisquer vestígios de etanol antes da eluição do ácido nucleico. O Etanol é um forte inibidor de PCR em tempo real.

A utilização de ARN transportador é crucial para a eficiência da extração e estabilidade do ácido nucleico.

Para obter informações adicionais e assistência técnica relativamente ao pré-tratamento e preparação de amostras, contacte o nosso Apoio Técnico (consulte o capítulo 14. Apoio Técnico).

8.2 Preparação da Master Mix

Todos os reagentes e amostras devem ser completamente descongelados, misturados (através de pipetagem ou por agitação ligeira em vortex) e centrifugados brevemente antes da utilização.

O RealStar® Malaria Screen & Type PCR Kit 1.0 contém um Internal Control (Controlo Interno, IC) heterólogo, que pode ser utilizado como um controlo de inibição de PCR ou para controlar o procedimento de preparação de amostras (extração de ácido nucleico) e como um PCR controlo de inibição.
Se o IC for utilizado como um controlo de inibição de PCR, mas não como um controlo para o procedimento de preparação de amostras, prepare cada Master Mix (Master Mix Pk/Pm/Po e Master Mix Pf/PV) segundo o seguinte esquema de pipetagem:

<table>
<thead>
<tr>
<th>Número de Reações (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Internal Control (controlo interno)</td>
<td>1 µl</td>
<td>12 µl</td>
</tr>
<tr>
<td>Volume do Master Mix</td>
<td>21 µl</td>
<td>252 µl</td>
</tr>
</tbody>
</table>

Se o IC for utilizado para o procedimento de preparação de amostras e como um controlo de inibição de PCR, adicione o IC durante o procedimento de extração de ácido nucleico.

Independentemente do método/sistema usado para a extração de ácido nucleico, o IC **não deve ser** adicionado diretamente ao espécime. O IC deve ser sempre acrescentado à mistura de espécime/Lysis Buffer (tampão de lixe). O volume do IC que deve ser adicionado depende sempre e apenas do volume da eluição. Este representa 10 % do volume de eluição. Por exemplo, se o ácido nucleico vai ser eluído em 60 µl de Elution Buffer (tampão de eluição) ou água, deve ser adicionado 6 µl de IC por amostra à mistura de espécime/Lysis Buffer (tampão de lixe).

Se o IC for acrescentado durante o procedimento de preparação de amostras, prepare cada Master Mix (Master Mix Pk/Pm/Po e Master Mix Pf/PV) segundo o seguinte esquema de pipetagem:

<table>
<thead>
<tr>
<th>Número de Reações (rxns)</th>
<th>1</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master A</td>
<td>5 µl</td>
<td>60 µl</td>
</tr>
<tr>
<td>Master B</td>
<td>15 µl</td>
<td>180 µl</td>
</tr>
<tr>
<td>Volume do Master Mix</td>
<td>20 µl</td>
<td>240 µl</td>
</tr>
</tbody>
</table>
8.3 Preparação da Reação

► Pipete 20 µl do Master Mix para cada poço necessário de uma placa de reação ótica com 96 poços adequada ou um tubo de reação ótico adequado.

► Adicione 10 µl da amostra (eluato da extração de ácido nucleico) ou 10 µl dos controlos (controlo positivo ou negativo).

<table>
<thead>
<tr>
<th>Preparação da Reação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Mix</td>
</tr>
<tr>
<td>Amostra ou Controlo</td>
</tr>
<tr>
<td>Volume Total</td>
</tr>
</tbody>
</table>

► Certifique-se de que é utilizado pelo menos um Controlo Positivo (Controlo Positivo Pk/Pm/Po para a Master Mix Pk/Pm/Po e Controlo Positivo Pf/Pv para a Master Mix Pf/Pv) e pelo menos um Controlo Negativo por Master Mix e processamento.

► Misture cuidadosamente as amostras e os controlos com a Master Mix através de pipetagem para cima e para baixo.

► Feche a placa de reação com 96 poços com as tampas adequadas ou uma película adesiva ótica e os tubos de reação adequados.

► Centrifugue a placa de reação com 96 poços numa centrifugadora com rotor para placas de microtitulação durante 30 segundos a aproximadamente 1000 x g (~ 3000 rpm).
9. Programação dos instrumentos de PCR em tempo real

Para obter informações relativas à configuração e programação dos diferentes instrumentos de PCR em tempo real, consulte o manual do utilizador do respetivo instrumento.

Para obter instruções detalhadas relativamente à utilização do RealStar® Malaria Screen & Type PCR Kit 1.0 em instrumentos de PCR em tempo real específicos, contacte o nosso Apoio Técnico (consulte o capítulo 14. Apoio Técnico).

9.1 Definições

Configure as seguintes definições:

<table>
<thead>
<tr>
<th>Definições</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume de Reação</td>
<td>30 µl</td>
</tr>
<tr>
<td>Taxa de Rampa</td>
<td>Predefinição</td>
</tr>
<tr>
<td>Referência Passiva</td>
<td>Nenhuma</td>
</tr>
</tbody>
</table>

9.2 Detetores de fluorescência (corantes)

Defina os detetores de fluorescência (corantes):

<table>
<thead>
<tr>
<th>Alvo</th>
<th>Master Mix</th>
<th>Nome do Detetor</th>
<th>Reporter</th>
<th>Quencher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN específico do P. knowlesi</td>
<td></td>
<td>P. knowlesi</td>
<td>ROX™</td>
<td>(Nenhum)</td>
</tr>
<tr>
<td>ADN específico do P. malariae</td>
<td>Pk/Pm/Po</td>
<td>P. malariae</td>
<td>FAM™</td>
<td>(Nenhum)</td>
</tr>
<tr>
<td>ADN específico do P. ovale</td>
<td></td>
<td>P. ovale</td>
<td>Cy5</td>
<td>(Nenhum)</td>
</tr>
<tr>
<td>ADN específico do P. falciparum</td>
<td>Pf/Pv</td>
<td>P. falciparum</td>
<td>FAM™</td>
<td>(Nenhum)</td>
</tr>
<tr>
<td>ADN específico do P. vivax</td>
<td></td>
<td>P. vivax</td>
<td>Cy5</td>
<td>(Nenhum)</td>
</tr>
</tbody>
</table>
9.3 Perfil de Temperatura e Aquisição de Corante

► Defina o perfil de temperatura e a aquisição de corante:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Repetições do Ciclo</th>
<th>Aquisição</th>
<th>Temperatura [°C]</th>
<th>Tempo [min:seg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desnaturação</td>
<td>Suspensão</td>
<td>1</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td>Amplificação</td>
<td>Realização de Ciclo</td>
<td>45</td>
<td>-</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sim</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>72</td>
</tr>
</tbody>
</table>

10. Análise de Dados

Para obter informações básicas relativas à análise de dados em instrumentos de PCR em tempo real, consulte o manual do utilizador do respetivo instrumento.

Para obter instruções detalhadas relativamente à análise dos dados gerados com o RealStar® Malaria Screen & Type PCR Kit 1.0 em diferentes instrumentos de PCR em tempo real, contacte o nosso Apoio Técnico (consulte o capítulo 14. Apoio Técnico).
10.1 Validez dos Processamentos do Teste de Diagnóstico

10.1.1 Processamento de Teste de Diagnóstico Válido (qualitativo)

Um teste de diagnóstico qualitativo é considerado válido se as seguintes condições de controlo forem cumpridas:

<table>
<thead>
<tr>
<th>ID do Controlo</th>
<th>ROX™</th>
<th>FAM™</th>
<th>Cy5</th>
<th>JOE™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlo Positivo P. knowlesi,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. malariae, P. ovale</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Controlo Positivo P. falciparum,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. vivax</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Controlo Negativo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

* A presença ou ausência de um sinal no canal JOE™ não é relevante para a validade da análise processada.

10.1.2 Processamento de Teste Inválido (qualitativo)

Um ensaio de diagnóstico qualitativo é inválido, (i) se o processamento não tiver sido concluído ou (ii) se alguma das condições para um ensaio de diagnóstico válido não existir.

No caso de um ensaio de diagnóstico inválido, repita o teste usando os restantes ácidos nucleicos purificados ou comece a partir das amostras originais novamente.
10.2 Interpretação dos Resultados

10.2.1 Análise Qualitativa

Tabela 2: Análise Qualitativa utilizando o Master Mix Pk/Pm/Po

<table>
<thead>
<tr>
<th>Canal de Deteção</th>
<th>Master Mix</th>
<th>Interpretação de Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROX™ FAM™ Cy5 JOE™</td>
<td>Pk/Pm/Po</td>
<td></td>
</tr>
<tr>
<td>+ + + +</td>
<td>+</td>
<td>ADN específico do P. knowlesi, P. malariae e P. ovale detetado.</td>
</tr>
<tr>
<td>+ - - +</td>
<td>-</td>
<td>ADN específico do P. knowlesi detetado.</td>
</tr>
<tr>
<td>- + - +</td>
<td>-</td>
<td>ADN específico do P. malariae detetado.</td>
</tr>
<tr>
<td>- - + +</td>
<td>-</td>
<td>ADN específico do P. ovale detetado.</td>
</tr>
<tr>
<td>+ + - +</td>
<td>+</td>
<td>ADN específico do P. knowlesi e P. malariae detetado.</td>
</tr>
<tr>
<td>+ - + +</td>
<td>+</td>
<td>ADN específico do P. knowlesi e P. ovale detetado.</td>
</tr>
<tr>
<td>- + + +</td>
<td>+</td>
<td>ADN específico do P. malariae e P. ovale detetado.</td>
</tr>
<tr>
<td>- - + +</td>
<td>+</td>
<td>Não foi detetado ADN específico do P. knowlesi nem do P. malariae nem do P. ovale.</td>
</tr>
<tr>
<td>- - - +</td>
<td>+</td>
<td>Inibição da PCR ou falha do reagente. Repita o teste a partir da amostra original ou recolha e teste uma nova amostra.</td>
</tr>
<tr>
<td>- - - -</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 3: Análise Qualitativa utilizando o Master Mix Pf/Pv

<table>
<thead>
<tr>
<th>Canal de Deteção</th>
<th>ROX™</th>
<th>FAM™</th>
<th>Cy5</th>
<th>JOE™</th>
<th>Interpretação de Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADN específico do P. falciparum e P. vivax detetado.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>+*</td>
<td>-</td>
<td>ADN específico do P. falciparum detetado.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>+*</td>
<td>-</td>
<td>ADN específico do P. vivax detetado.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Não foi detetado ADN específico do P. falciparum nem do P. vivax.</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Inibição da PCR ou falha do reagente. Repita o teste a partir da amostra original ou recolha e teste uma nova amostra.</td>
</tr>
</tbody>
</table>

* A deteção do Internal Control (controlo interno) no canal de deteção JOE™ não é necessária para os resultados positivos no canal de deteção Cy5, FAM™ nem no ROX™. Uma carga elevada de ADN do *Plasmodium* spp. na amostra pode causar a redução ou ausência do sinal de Internal Control (controlo interno).

11. Avaliação do Desempenho

A avaliação do desempenho do kit RealStar® Malaria Screen & Type PCR Kit 1.0 foi efetuada utilizando produtos de PCR quantificados e ADN genómico do *Plasmodium* species.

11.1 Sensibilidade Analítica

A sensibilidade analítica do kit RealStar® Malaria Screen & Type PCR Kit 1.0 define-se como a concentração (cópias/µl do eluato) de moléculas de ADN específico de *Plasmodium* que podem ser detetadas com uma taxa de positividade de 95 %. A sensibilidade analítica foi determinada por análise de séries de diluições de produtos de PCR específicos de *Plasmodium* (*P. falciparum*, *P. vivax*, *P. ovale*, *P. malariae* e *P. knowlesi*).
Tabela 4: Resultados da PCR utilizados para o cálculo da sensibilidade analítica no que respeita à deteção do ADN específico do *P. falciparum*

<table>
<thead>
<tr>
<th>Conc. de entrada [cópias/µl]</th>
<th>Número de Réplicas</th>
<th>Número de Positivos</th>
<th>Taxa de Positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>316,228</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>100,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>31,622</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>3,161</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>0,316</td>
<td>24</td>
<td>18</td>
<td>75</td>
</tr>
<tr>
<td>0,100</td>
<td>24</td>
<td>14</td>
<td>58</td>
</tr>
<tr>
<td>0,032</td>
<td>23</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>0,000</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabela 5: Resultados da PCR utilizados para o cálculo da sensibilidade analítica no que respeita à deteção do ADN específico do *P. vivax*

<table>
<thead>
<tr>
<th>Conc. de entrada [cópias/µl]</th>
<th>Número de Réplicas</th>
<th>Número de Positivos</th>
<th>Taxa de Positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>316,228</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>100,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>31,622</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>3,161</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>0,316</td>
<td>24</td>
<td>19</td>
<td>79</td>
</tr>
<tr>
<td>0,100</td>
<td>24</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>0,032</td>
<td>24</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>0,000</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabela 6: Resultados da PCR utilizados para o cálculo da sensibilidade analítica no que respeita à detecção do ADN específico do *P. ovale*

<table>
<thead>
<tr>
<th>Conc. de entrada [cópias/µl]</th>
<th>Número de Réplicas</th>
<th>Número de Positivos</th>
<th>Taxa de Positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>316,228</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>100,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>31,622</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>3,161</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>24</td>
<td>21</td>
<td>88</td>
</tr>
<tr>
<td>0,316</td>
<td>24</td>
<td>15</td>
<td>63</td>
</tr>
<tr>
<td>0,100</td>
<td>24</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>0,032</td>
<td>24</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0,000</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabela 7: Resultados da PCR utilizados para o cálculo da sensibilidade analítica no que respeita à detecção do ADN específico do *P. malariae*

<table>
<thead>
<tr>
<th>Conc. de entrada [cópias/µl]</th>
<th>Número de Réplicas</th>
<th>Número de Positivos</th>
<th>Taxa de Positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>316,228</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>100,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>31,622</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>3,161</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>0,316</td>
<td>24</td>
<td>23</td>
<td>96</td>
</tr>
<tr>
<td>0,100</td>
<td>24</td>
<td>9</td>
<td>38</td>
</tr>
<tr>
<td>0,032</td>
<td>24</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>0,000</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabela 8: Resultados da PCR utilizados para o cálculo da sensibilidade analítica no que respeita à deteção do ADN específico do *P. knowlesi*

<table>
<thead>
<tr>
<th>Conc. de entrada [cópias/µl]</th>
<th>Número de Réplicas</th>
<th>Número de Positivos</th>
<th>Taxa de Positividade [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>316,228</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>100,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>31,622</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>10,000</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>3,161</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>24</td>
<td>21</td>
<td>88</td>
</tr>
<tr>
<td>0,316</td>
<td>24</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>0,100</td>
<td>24</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>0,032</td>
<td>24</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>0,000</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A sensibilidade analítica do kit RealStar® Malaria Screen & Type PCR Kit 1.0 foi determinada por análise de probit:

- Para a deteção de ADN específico do *P. falciparum*, a sensibilidade analítica é de 0,80 cópias/µl de eluato [intervalo de confiança (CI) de 95 %: 0,44 a 2,45 cópias/µl]
- Para a deteção de ADN específico do *P. vivax*, a sensibilidade analítica é de 0,73 cópias/µl de eluato [intervalo de confiança (CI) de 95 %: 0,46 a 1,62 cópias/µl]
- Para a deteção de ADN específico do *P. ovale*, a sensibilidade analítica é de 1,46 cópias/µl de eluato [intervalo de confiança (CI) de 95 %: 0,89 a 3,28 cópias/µl]
- Para a deteção de ADN específico do *P. malariae*, a sensibilidade analítica é de 0,36 cópias/µl de eluato [intervalo de confiança (CI) de 95 %: 0,24 a 0,74 cópias/µl]
• Para a deteção de ADN específico do *P. knowlesi*, a sensibilidade analítica é de 2,35 cópias/µl de eluato [intervalo de confiança (CI) de 95 %: 1,37 a 5,55 cópias/µl]

11.2 Especificidade Analítica

A especificidade analítica do kit RealStar® Malaria Screen & Type PCR Kit 1.0 foi avaliada através do teste a um painel de ARN/ADN genómico extraído de agentes patogénicos relacionados com *Plasmodium* e outros agentes patogénicos que provocam sintomas semelhantes a *Plasmodium*.

O RealStar® Malaria Screen & Type PCR Kit 1.0 não reagiu com nenhum dos seguintes patogénicos:

- Vírus Chikungunya
- Vírus da dengue
- Vírus da gripe A
- Vírus da gripe B
- Vírus do Nilo Ocidental
- *Babesia microti*
- *Leishmania donovani*
- *Leishmania infantum*
- *Leishmania major*
- *Toxoplasma gondii*
- *Trypanosoma brucei*
- *Trypanosoma cruzi*

Para demonstrar que o kit RealStar® Malaria Screen & Type PCR Kit 1.0 consegue detetar e diferenciar corretamente o ADN do *P. falciparum*, *P. vivax*, *P. knowlesi*, *P. malariae* e *P. ovale*, o ADN genómico das 5 espécies de *Plasmodium* foi testado utilizando um CFX96™ Deep Well Real-Time PCR Detection System (Bio-Rad) para análise PCR em tempo real. Cada amostra testou positivo para o respetivo ADN específico da espécie de *Plasmodium*, mas negativo para as outras quatro espécies de *Plasmodium*.
11.3 Precisão

A precisão do kit RealStar® Malaria Screen & Type PCR Kit 1.0 foi determinada como variabilidade intraensaio (variabilidade dentro de um ensaio), variabilidade interensaio (variabilidade entre diferentes ensaios) e variabilidade entre lotes (variabilidade entre diferentes lotes de produção). A variabilidade total foi calculada combinando as 3 análises.

Os dados de variabilidade são expressos em termos de desvio padrão e coeficiente de variação. Os dados são baseados nos valores do ciclo limiar (C_T). Foram analisadas pelo menos 6 réplicas por amostra quanto a variabilidade intraensaio, variabilidade interensaio e entre lotes.

Tabela 9: Dados de precisão para a deteção do ADN específico do *P. ovale, P. malariae* e *P. knowlesi*

<table>
<thead>
<tr>
<th></th>
<th>Ciclo Limiar Médio (C_T)</th>
<th>Desvio padrão</th>
<th>Coeficiente de Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade Intraensaio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. malariae</td>
<td>31,88</td>
<td>0,24</td>
<td>0,76</td>
</tr>
<tr>
<td>P. ovale</td>
<td>30,29</td>
<td>0,12</td>
<td>0,40</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>30,39</td>
<td>0,14</td>
<td>0,46</td>
</tr>
<tr>
<td>Variabilidade Interensaio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. malariae</td>
<td>31,89</td>
<td>0,18</td>
<td>0,58</td>
</tr>
<tr>
<td>P. ovale</td>
<td>30,30</td>
<td>0,10</td>
<td>0,32</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>30,53</td>
<td>0,14</td>
<td>0,45</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. malariae</td>
<td>31,95</td>
<td>0,11</td>
<td>0,35</td>
</tr>
<tr>
<td>P. ovale</td>
<td>30,26</td>
<td>0,11</td>
<td>0,35</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>30,40</td>
<td>0,11</td>
<td>0,35</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. malariae</td>
<td>31,92</td>
<td>0,16</td>
<td>0,51</td>
</tr>
<tr>
<td>P. ovale</td>
<td>30,27</td>
<td>0,10</td>
<td>0,32</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>30,48</td>
<td>0,15</td>
<td>0,49</td>
</tr>
</tbody>
</table>
Tabela 10: Dados de precisão para a deteção do ADN específico do *P. falciparum* e *P. vivax*

<table>
<thead>
<tr>
<th></th>
<th>Ciclo Limiar Médio (C_t)</th>
<th>Desvio padrão</th>
<th>Coeficiente de Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum e P. vivax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variabilidade Intraensaio</td>
<td>P. falciparum</td>
<td>31,72</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>P. vivax</td>
<td>31,71</td>
<td>0,26</td>
</tr>
<tr>
<td>Variabilidade Interensaio</td>
<td>P. falciparum</td>
<td>31,38</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>P. vivax</td>
<td>31,57</td>
<td>0,24</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>P. falciparum</td>
<td>31,42</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>P. vivax</td>
<td>31,09</td>
<td>0,40</td>
</tr>
<tr>
<td>Variabilidade Total</td>
<td>P. falciparum</td>
<td>31,29</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>P. vivax</td>
<td>31,30</td>
<td>0,46</td>
</tr>
</tbody>
</table>

Tabela 11: Dados de precisão para a deteção do Internal Control (controlo interno) utilizando Master Mix Pk/Pm/Po

<table>
<thead>
<tr>
<th>Internal Control (controlo interno)</th>
<th>Ciclo Limiar (C_t)</th>
<th>Desvio padrão</th>
<th>Coeficiente de Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade Intraensaio</td>
<td>25,88</td>
<td>0,07</td>
<td>0,29</td>
</tr>
<tr>
<td>Variabilidade Interensaio</td>
<td>25,64</td>
<td>0,27</td>
<td>1,05</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>25,89</td>
<td>0,06</td>
<td>0,23</td>
</tr>
<tr>
<td>Variância Total</td>
<td>25,72</td>
<td>0,25</td>
<td>0,97</td>
</tr>
</tbody>
</table>

Tabela 12: Dados de precisão para a deteção do Internal Control (controlo interno) utilizando Master Mix Pf/Pv

<table>
<thead>
<tr>
<th>Internal Control (controlo interno)</th>
<th>Ciclo Limiar (C_t)</th>
<th>Desvio padrão</th>
<th>Coeficiente de Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidade Intraensaio</td>
<td>26,73</td>
<td>0,13</td>
<td>0,47</td>
</tr>
<tr>
<td>Variabilidade Interensaio</td>
<td>26,90</td>
<td>0,21</td>
<td>0,76</td>
</tr>
<tr>
<td>Variabilidade Entre Lotes</td>
<td>26,96</td>
<td>0,13</td>
<td>0,49</td>
</tr>
<tr>
<td>Variância Total</td>
<td>26,89</td>
<td>0,17</td>
<td>0,63</td>
</tr>
</tbody>
</table>
11.4 Avaliação de Diagnóstico

O kit RealStar® Malaria Screen & Type PCR Kit 1.0 foi avaliado num estudo comparativo com PCR convencional in-house [com base em Rubio et al. (2002) e Ta et al. (2014)]. Foram testadas retrospectivamente 105 amostras individuais de sangue total:

- 75 amostras de sangue total de doentes que anteriormente testaram positivo para o *Plasmodium* spp. patogénico humano
- 15 amostras de sangue total de doentes individuais que anteriormente testaram negativo para o *Plasmodium* spp. patogénico humano
- 15 amostras de sangue total de doentes individuais que anteriormente testaram positivo para outros parasitas diferentes do *Plasmodium* spp. patogénico humano causadores de doenças com sintomas semelhantes à malária

O kit RealStar® Malaria Screen & Type PCR Kit 1.0 e a PCR convencional in-house [com base em Rubio et al. (2002) e Ta et al. (2014)] foram usados em combinação com o QIAamp® DNA Blood Mini QIAcube® Kit (QIAGEN) e o QIAcube® (QIAGEN).

Para a análise qualitativa, foram excluídas todas as amostras com um resultado inválido para um ou ambos os ensaios.
Os resultados das 105 amostras restantes são apresentados na tabela 13.

Tabela 13: Resultados da avaliação da sensibilidade e da especificidade de diagnóstico para *Plasmodium* spp. em amostras de sangue total

<table>
<thead>
<tr>
<th>PCR convencional in-house</th>
<th>POSITIVO</th>
<th>NEGATIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[com base em Rubio et al. (2002) e Ta et al. (2014)]</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>RealStar® Malaria Screen & Type PCR Kit 1.0</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

A sensibilidade e a especificidade de diagnóstico do kit RealStar® Malaria Screen & Type PCR Kit 1.0 em comparação com PCR convencional in-house [com base em Rubio *et al.* (2002) e Ta *et al.* (2014)] foram de 98,67 % (intervalo de confiança: 92,79 % a 99,97 %) e 100,00 % (intervalo de confiança: 88,43 % a 100,00 %), respetivamente.
Os resultados da avaliação de tipagem para *Plasmodium* spp. nas amostras de sangue total são apresentados na tabela 14.

Tabela 14: Resultados da avaliação de tipagem para *Plasmodium* spp. nas amostras de sangue total

<table>
<thead>
<tr>
<th>PCR convencional in-house [com base em Rubio et al. (2002) e Ta et al. (2014)]</th>
<th>P. falciparum</th>
<th>P. vivax</th>
<th>P. malariae</th>
<th>P. ovale</th>
<th>P. knowlesi</th>
<th>Negativo</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>P. vivax</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>P. malariae</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>P. ovale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>P. knowlesi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Negativo</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>105</td>
</tr>
</tbody>
</table>
Os resultados na tabela 14 mostram que, à exceção de uma amostra, os resultados do kit RealStar® Malaria Screen & Type PCR Kit 1.0 e do ensaio de referência foram 100 % idênticos no que respeita à identificação do tipo de Plasmodium spp.

12. Limitações

• A rigorosa conformidade com as instruções de utilização é necessária para obter resultados otimizados.

• A utilização deste produto está limitada a pessoal especialmente instruído e formado em técnicas de PCR em tempo real e em procedimentos de diagnóstico in vitro.

• A boa prática laboratorial é essencial para que este ensaio tenha um desempenho adequado. Deve-se ter um cuidado extremo para preservar a pureza dos componentes do kit e as configurações da reação. Todos os reagentes devem ser vigiados de perto para evitar impurezas e contaminação. Qualquer reagente duvidoso deve ser rejeitado.

• São necessários procedimentos de recolha, transporte, armazenamento e processamento de amostras adequados para o desempenho ideal deste teste.

• Este ensaio não pode ser utilizado diretamente na amostra. Devem ser realizados métodos apropriados de extração de ácido nucleico antes da utilização deste ensaio.

• A presença de inibidores de PCR (por ex., heparina) poderá causar resultados inválidos ou falsos negativos.

• A existência potencial de mutações nas regiões alvo do genoma do Plasmodium spp. abrangidas pelos primers e/ou sondas utilizados no kit poderá resultar na incapacidade de detecção da presença dos agentes patogénicos.

• À semelhança de qualquer outro teste de diagnóstico, os resultados do kit RealStar® Malaria Screen & Type PCR Kit 1.0 têm de ser interpretados tendo em consideração todos os dados clínicos e laboratoriais.
13. Controlo de Qualidade

De acordo com o Sistema de Gestão da Qualidade altona Diagnostics GmbH EN ISO 13485 certificado, cada lote de RealStar® Malaria Screen & Type PCR Kit 1.0 é testado face a especificações predeterminadas de modo a garantir uma qualidade do produto consistente.

14. Apoio Técnico

Para apoio ao cliente, contacte o nosso Apoio Técnico através do:

 e-mail: support@altona-diagnostics.com
 telefone: +49-(0)40-5480676-0

15. Bibliografia

16. Marcas Comerciais e Isenções de Responsabilidade

RealStar® (altona Diagnostics); ABI Prism® (Applied Biosystems); CFX96™ (Bio-Rad); FAM™, JOE™, ROX™ (Thermo Fisher Scientific); LightCycler® (Roche); Maxwell® (Promega); Mx 3005P™ (Stratagene); NucliSENS®, easyMAG® (bioMérieux); Rotor-Gene®, QIAamp®, QIAcube®, QIAsymphony® (QIAGEN); VERSANT® (Siemens Healthcare).

Os nomes registados, marcas comerciais, etc. utilizados neste documento, mesmo onde não estão especificamente marcados como tal, não devem ser considerados como estando desprotegidos pela legislação.

O kit RealStar® Malaria Screen & Type PCR Kit 1.0 é um kit de diagnóstico com a marcação CE de acordo com a Diretiva Europeia 98/79/CE relativa ao diagnóstico in vitro.

Produto não licenciado junto da Health Canada e não autorizado ou aprovado pela FDA.

Não disponível em todos os países.

© 2021 altona Diagnostics GmbH; todos os direitos reservados.
17. Explicação de Símbolos

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVD</td>
<td>Dispositivo médico de diagnóstico in vitro</td>
</tr>
<tr>
<td>LOT</td>
<td>Código do lote</td>
</tr>
<tr>
<td>CAP</td>
<td>Cor da tampa</td>
</tr>
<tr>
<td>REF</td>
<td>Número de catálogo</td>
</tr>
<tr>
<td>CONT</td>
<td>Conteúdo</td>
</tr>
<tr>
<td>NUM</td>
<td>Número</td>
</tr>
<tr>
<td>COMP</td>
<td>Componente</td>
</tr>
<tr>
<td>GTIN</td>
<td>Número de item de comércio internacional</td>
</tr>
<tr>
<td>💾</td>
<td>Consulte as instruções de utilização</td>
</tr>
<tr>
<td>℃</td>
<td>Contém o suficiente para "n" testes/reações (rxns)</td>
</tr>
<tr>
<td>🕒</td>
<td>Limite de temperatura</td>
</tr>
<tr>
<td>🕒</td>
<td>Data de validade</td>
</tr>
<tr>
<td>🏭</td>
<td>Fabricante</td>
</tr>
</tbody>
</table>

Atenção: Destaca os procedimentos ou as instruções de funcionamento que, se não forem seguidos corretamente, podem resultar em lesões pessoais ou afetar o desempenho do produto. Contacte o Apoio Técnico da altona Diagnostics para obter assistência.
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nota: Consiste em informações úteis para o utilizador mas que não são essenciais para a tarefa em questão.</td>
</tr>
<tr>
<td></td>
<td>Versão</td>
</tr>
</tbody>
</table>

Nota: Consiste em informações úteis para o utilizador mas que não são essenciais para a tarefa em questão.

Versão
always a drop ahead.